
133

Transform 1: Translate, Matrices
This unit introduces coordinate system transformations and explains how to control
their scope.

Syntax introduced:
translate(), pushMatrix(), popMatrix()

The coordinate system introduced in Shape 1 uses the upper-left corner of the display
window as the origin with the x-coordinates increasing to the right and the y-
coordinates increasing downward. This system can be modifi ed with transformations.
The coordinates can be translated, rotated, and scaled so shapes are drawn to the display
window with a different position, orientation, and size.

Translation

The translate() function moves the origin from the upper-left corner of the screen
to another location. It has two parameters. The fi rst is the x-coordinate offset and the
second is the y-coordinate offset:

 translate(x, y)

The values of the x and y parameters are added to any shapes drawn after the function
is run. If 10 is used as the x parameter and 30 is used as the y parameter, a point drawn
at coordinate (0,5) will instead be drawn at coordinate (10,35). Only elements drawn after
the transformation are affected. The following examples show how this works.

 // The same rectangle is drawn, but only the second is

 // affected by translate() because it is drawn after

 rect(0, 5, 70, 30);

 translate(10, 30); // Shifts 10 pixels right and 30 down

 rect(0, 5, 70, 30);

 // A negative number used as a parameter to translate()

 // moves the coordinates in the opposite direction

 rect(0, 5, 70, 30);

 translate(10, -10); // Shifts 10 pixels right and up

 rect(0, 5, 70, 30);

16-01

16-02

Reas_03_101-172.indd Sec2:133Reas_03_101-172.indd Sec2:133 5/23/07 1:33:43 PM5/23/07 1:33:43 PM

134 Transform 1: Translate, Matrices

The translate() function is additive. If translate(10,30) is run twice, all the
elements drawn after will display with an x-offset of 20 and a y-offset of 60.

 rect(0, 5, 70, 30);

 translate(10, 30); // Shifts 10 pixels right and 30 down

 rect(0, 5, 70, 30);

 translate(10, 30); // Shifts everything again for a total

 rect(0, 5, 70, 30); // 20 pixels right and 60 down

Controlling transformations

The transformation matrix is a set of numbers that defi nes how geometry is drawn to
the screen. Transformation functions such as translate() alter the numbers in this
matrix and cause the geometry to draw differently. In the previous examples, we saw
how transformations accumulate as the program runs. The pushMatrix() function
records the current state of all transformations so that a program can return to it later.
To return to the previous state, use popMatrix().
 Think of each matrix as a sheet of paper with the current list of transformations
(translate, rotate, scale) written on the surface. When a function such as translate()
is run, it is added to the paper. To save the current matrix for later use, add a new sheet
of paper to the top of the pile and copy the information from the sheet below. Any new
changes are made to the top sheet of paper, preserving the numbers on the sheet(s)
below. To return to a previous coordinate matrix, simply remove and discard the top
sheet of paper to reveal the saved transformations below:

This is essentially how coordinate matrices are updated and stored, but more technical
terms are used. Adding a sheet of paper is pushing, removing a sheet is popping and
the pile of pages is called a stack. The pushMatrix() function is used to add a new
coordinate matrix to the stack, and popMatrix() is used to remove one from the
stack. Each pushMatrix() must have a corresponding popMatrix(). The function
pushMatrix() cannot be used without popMatrix() and vice versa.
 Compare the two examples below. Both draw the same rectangles, but with
different results. The second example employs pushMatrix() and popMatrix() to
isolate the effects of the translate() function to apply only to the fi rst rectangle.
Because the other rectangle is drawn after the call to popMatrix() it draws from its
x-coordinate without being affected by the translation.

pushMatrix() popMatrix()

16-03

Reas_03_101-172.indd Sec2:134Reas_03_101-172.indd Sec2:134 5/23/07 1:33:44 PM5/23/07 1:33:44 PM

135 Transform 1: Translate, Matrices

 translate(33, 0); // Shift 33 pixels right

 rect(0, 20, 66, 30);

 rect(0, 50, 66, 30);

 pushMatrix();

 translate(33, 0); // Shift 33 pixels right

 rect(0, 20, 66, 30);

 popMatrix(); // Remove the shift

 // This shape is not affected by translate() because

 // the transformation is isolated between the pushMatrix()

 // and popMatrix()

 rect(0, 50, 66, 30);

Embedding the pushMatrix() and popMatrix() functions can further control their
range. In the following example, the fi rst rectangle is affected by the fi rst translation, the
second rectangle is affected by the fi rst and second translations, and the third rectangle
is only affected by the fi rst translation because the second translation is isolated with
a pushMatrix() and popMatrix() pair. The fourth rectangle is not affected by any
of the translations because the popMatrix() on the second-to-last line cancels the
pushMatrix() on the fi rst line.

 pushMatrix();

 translate(20, 0);

 rect(0, 10, 70, 20); // Draws at (20, 30)

 pushMatrix();

 translate(30, 0);

 rect(0, 30, 70, 20); // Draws at (50, 30)

 popMatrix();

 rect(0, 50, 70, 20); // Draws at (20, 50)

 popMatrix();

 rect(0, 70, 70, 20); // Draws at (0, 70)

The transformation functions for rotating and scaling are introduced in
Transform 2 (p. 137).

 Exercises
1. Use translate() to reposition a shape.
2. Use multiple translations to reposition a series of shapes.
3. Use pushMatrix() and popMatrix() to rearrange the composition from exercise 2.

16-04

16-05

16-06

Reas_03_101-172.indd Sec2:135Reas_03_101-172.indd Sec2:135 5/23/07 1:33:44 PM5/23/07 1:33:44 PM

Reas_03_101-172.indd Sec2:136Reas_03_101-172.indd Sec2:136 5/23/07 1:40:53 PM5/23/07 1:40:53 PM

137

Transform 2: Rotate, Scale
This unit introduces the transformation functions for rotating and scaling and explains
how to combine the functions to control the effect.

Syntax introduced:
rotate(), scale()

The transformation functions are powerful ways to modify the geometry displayed to
the screen. It’s simple to use one, but combining them requires a greater understanding
of how they work. The order in which transformation functions are run can radically
change the way they affect the coordinates.

Rotation, Scaling

The rotate() function rotates the coordinate system so that shapes can be drawn
to the screen at an angle. It has one parameter that sets the amount of the rotation as
an angle:

 rotate(angle)

The rotate function assumes that the angle is specifi ed in units of radians (p. 117).
Shapes are always rotated around their position relative to the origin (0,0), and positive
numbers rotate them in a clockwise direction.
 As with all transformations, the effects of rotation are cumulative. If there is a
rotation of π/4 radians and another of π/4 radians, objects drawn afterward will be
rotated π/2 radians. The following examples show the most basic use of the rotate()
function.

 smooth();

 rect(55, 0, 30, 45);

 rotate(PI/8);

 rect(55, 0, 30, 45);

 smooth();

 rect(10, 60, 70, 20);

 rotate(-PI/16);

 rect(10, 60, 70, 20);

 rotate(-PI/8);

 rect(10, 60, 70, 20);

17-01

17-02

Reas_03_101-172.indd Sec2:137Reas_03_101-172.indd Sec2:137 5/23/07 1:40:03 PM5/23/07 1:40:03 PM

138 Transform 2: Rotate, Scale

These examples make it clear that rotating objects around the origin has limitations. To
rotate an object at a different position, it’s necessary to use translate() followed by
rotate(). This is explained in the next section, “Combining transformations.”
 The scale() function magnifi es the coordinate system so that shapes are drawn
larger. It has one or two parameters to set the amount of increase or decrease:

 scale(size)

 scale(xsize, ysize)

The version with one parameter scales shapes in all dimensions, and the version with
two parameters can scale the x-dimension separately from the y-dimension. The
parameters to scale are defi ned in terms of percentages expressed as decimals. Examples
of decimal percentages are 2.0 for 200%, 1.5 for 150%, and 0.5 for 50%. The following
examples show the most basic use of the scale() function.

 smooth();

 ellipse(32, 32, 30, 30);

 scale(1.8);

 ellipse(32, 32, 30, 30);

 smooth();

 ellipse(32, 32, 30, 30);

 scale(2.8, 1.8);

 ellipse(32, 32, 30, 30);

As the previous examples show, the stroke weight is also affected by scale(). To keep
the same stroke weight and scale a shape, divide the parameter of the strokeWeight()
function by the scale value.

 float s = 1.8;

 smooth();

 ellipse(32, 32, 30, 30);

 scale(s);

 strokeWeight(1.0 / s);

 ellipse(32, 32, 30, 30);

As with translate() and rotate(), the effects of each scale() accumulate each
time the function is run.

 rect(10, 20, 70, 20);

 scale(1.7);

 rect(10, 20, 70, 20);

 scale(1.7);

 rect(10, 20, 70, 20);

17-03

17-04

17-05

17-06

Reas_03_101-172.indd Sec2:138Reas_03_101-172.indd Sec2:138 5/23/07 1:33:46 PM5/23/07 1:33:46 PM

139 Transform 2: Rotate, Scale

Combining transformations

When shapes are drawn to the screen, the transform(), rotate(), and scale()
functions affect them in relation to the origin. For example, rotating a rectangle at
coordinate (50,20) will cause the shape to orbit around the origin and not around its
center or corner as you might expect:

To rotate this shape around its upper-left corner, you must place that point at the
coordinate (0,0). A translation is used to put the shape into the desired position in
relation to the global coordinates. When the rotate function is run, the shape now orbits
around its upper-left corner, the origin of its local coordinate system:

There are two ways to think about transformations. One method is to view the
coordinate system as modifi ed and the coordinates for shapes as converted to the new
coordinate system. For example, if the coordinate system is rotated 30°, the coordinates
of any shape drawn to the screen are converted into this modifi ed system and displayed
with a 30° tilt. The other school of thought applies the transformations directly to the
shapes. In this same example, the shape itself is perceived to be rotated 30°.
 The order in which transformations are made affects the results. The following two
examples have the same lines of code, but the order of the translate() and rotate()
functions is reversed :

 translate(width/2, height/2);

 rotate(PI/8);

 rect(-25, -25, 50, 50);

 rotate(PI/8);

 translate(width/2, height/2);

 rect(-25, -25, 50, 50);

translate(50,20)rect(0,0,40,20) rotate(PI/12)

rect(50,20,40,20) rotate(PI/12)

17-07

17-08

Reas_03_101-172.indd Sec2:139Reas_03_101-172.indd Sec2:139 5/23/07 1:33:46 PM5/23/07 1:33:46 PM

140 Transform 2: Rotate, Scale

Transformation combinations
The order in which transformations occur in a program affects how they combine. For example, a
rotate() after a translate() will have a different effect than the reverse. These diagrams present two
ways to think about the transformations in codes 17-06 and 17-07.

Rotate Draw rectangleTranslate

Translate

Code 17-07 analyzed from two perspectives

Rotate Draw rectangleTranslate

RotateDraw rectangle

Translate RotateDraw rectangle

Coordinate view
Reading the code from
top to bottom

Shape view
Reading the code from
bottom to top

Code 17-08 analyzed from two perspectives

Coordinate view
Reading the code from
top to bottom

Shape view
Reading the code from
bottom to top

Reas_03_101-172.indd Sec2:140Reas_03_101-172.indd Sec2:140 5/23/07 1:33:47 PM5/23/07 1:33:47 PM

141 Transform 2: Rotate, Scale

These simple examples demonstrate the potential in combining transformations but
also make clear that transformations require thought and planning. More combined
examples follow:

 translate(10, 60);

 rect(0, 0, 70, 20);

 rotate(-PI/12);

 rect(0, 0, 70, 20);

 rotate(-PI/6);

 rect(0, 0, 70, 20);

 translate(45, 60);

 rect(-35, -5, 70, 10);

 rotate(-PI/8);

 rect(-35, -5, 70, 10);

 rotate(-PI/8);

 rect(-35, -5, 70, 10);

 noFill();

 translate(10, 20);

 rect(0, 0, 20, 10);

 scale(2.2);

 rect(0, 0, 20, 10);

 scale(2.2);

 rect(0, 0, 20, 10);

 noFill();

 translate(50, 30);

 rect(-10, 5, 20, 10);

 scale(2.5);

 rect(-10, 5, 20, 10);

The effects of the transformation functions accumulate throughout the program, and
these effects can be magnifi ed with a for structure.

 background(0);

 smooth();

 stroke(255, 120);

 translate(66, 33); // Set initial offset

 for (int i = 0; i < 18; i++) { // 18 repetitions

 strokeWeight(i); // Increase stroke weight

 rotate(PI/12); // Accumulate the rotation

 line(0, 0, 55, 0);

 }

17-09

17-10

17-11

17-12

17-13

Reas_03_101-172.indd Sec2:141Reas_03_101-172.indd Sec2:141 5/23/07 1:33:48 PM5/23/07 1:33:48 PM

142 Transform 2: Rotate, Scale

 background(0);

 smooth();

 noStroke();

 fill(255, 48);

 translate(33, 66); // Set initial offset

 for (int i = 0; i < 12; i++) { // 12 repetitions

 scale(1.2); // Accumulate the scaling

 ellipse(4, 2, 20, 20);

 }

Working with these examples will be more helpful than reading the explanation over
and over. Try these examples inside Processing and make modifi cations to the numbers
used and the sequence of translate, rotate, and scale to develop a sense of how these
functions work.

New coordinates

The default position of the coordinate origin (0,0) is the upper-left corner of the display
window, the x-coordinate numbers increase to the right, the y-coordinates increase
from the top, and each coordinate maps directly to a pixel position. The transformation
functions can change these defaults to modify the coordinate system. The following
examples move the origin to the center and lower-left corner of the display window and
modify the scale.

 // Shift the origin (0,0) to the center

 size(100, 100);

 translate(width/2, height/2);

 line(-width/2, 0, width/2, 0); // Draw x-axis

 line(0, -height/2, 0, height/2); // Draw y-axis

 smooth();

 noStroke();

 fill(255, 204);

 ellipse(0, 0, 45, 45); // Draw at the origin

 ellipse(-width/2, height/2, 45, 45);

 ellipse(width/2, -height/2, 45, 45);

The translate() and scale() functions can combine to change the range of values.
In the following example, the right edge of the screen is mapped to the x-coordinate
of 1.0, the left edge to the x-coordinate -1.0, the top edge to the y-coordinate 1.0, and
the bottom edge to the y-coordinate -1.0. This system will always scale to fi t the entire
display window. Run this program, but change the parameters to size() to see it work.

17-14

17-15

Reas_03_101-172.indd Sec2:142Reas_03_101-172.indd Sec2:142 5/23/07 1:33:48 PM5/23/07 1:33:48 PM

143 Transform 2: Rotate, Scale

 // Shift the origin (0,0) to the center

 // and resizes the coordinate system

 size(100, 100);

 scale(width/2, height/2);

 translate(1.0, 1.0);

 strokeWeight(1.0/width);

 line(-1, 0, 1, 0); // Draw x-axis

 line(0, -1, 0, 1); // Draw y-axis

 smooth();

 noStroke();

 fill(255, 204);

 ellipse(0, 0, 0.9, 0.9); // Draw at the origin

 ellipse(-1.0, 1.0, 0.9, 0.9);

 ellipse(1.0, -1.0, 0.9, 0.9);

The translate() and scale() functions can be combined to put the origin in the
lower-left corner of the screen. This is the coordinate system used by Adobe Illustrator
and PostScript. Scaling the y-axis by -1 causes the y-coordinates to increment in
the opposite direction. This can be useful when converting a program written using
this coordinate system into Processing, rather than converting the y-coordinate of
every point.

 // Shift the origin (0,0) to the lower-left corner

 size(100, 100);

 translate(0, height);

 scale(1.0, -1.0);

 line(0, 1, width, 1); // Draw x-axis

 line(0, 1, 0, height); // Draw y-axis

 smooth();

 noStroke();

 fill(255, 204);

 ellipse(0, 0, 45, 45); // Draw at the origin

 ellipse(width/2, height/2, 45, 45);

 ellipse(width, height, 45, 45);

 Exercises
1. Use rotate() to change the orientation of a shape.
2. Use scale() with a for structure to scale a shape multiple times.
3. Combine translate() and rotate() to rotate a shape around its own center.

17-16

17-17

Reas_03_101-172.indd Sec2:143Reas_03_101-172.indd Sec2:143 5/23/07 1:33:48 PM5/23/07 1:33:48 PM

