


         Learning Processing

A Beginner’s Guide to Programming Images, 
Animation, and Interaction



   The Morgan Kaufmann Series 
in Computer Graphics

    Learning Processing  
    Daniel Shiffman  

    Digital Modeling of Material Appearance  
    Julie Dorsey, Holly Rushmeier,  and 
 François Sillion  

    Mobile 3D Graphics with OpenGL ES 
and M3G  
    Kari Pulli, Tomi Aarnio, Ville 
Miettinen, Kimmo Roimela,  and  Jani 
Vaaralla  

    Visualization in Medicine  
    Bernhard Preim  and  Dirk Bartz  

    Geometric Algebra for Computer Science: As 
Object-oriented Approach to Geometry  
    Leo Dorst, Daniel Fontijne,  and 
 Stephen Mann  

    Point-Based Graphics  
   M arkus  G ross  and H anspeter  
P fister , Editors 

    High Dynamic Range Imaging: Data 
Acquisition, Manipulation, and Display  
    Erik Reinhard, Greg Ward, Sumanta 
Pattanaik,  and  Paul Debevec  

    Complete Maya Programming Volume II: 
An In-depth Guide to 3D Fundamentals, 
Geometry, and Modeling  
   D avid  A. D. G ould  

    MEL Scripting for Maya Animators, 
Second Edition  
    Mark R. Wilkins  and  Chris Kazmier  

    Advanced Graphics Programming Using 
OpenGL  
    Tom McReynolds  and  David Blythe  

    Digital Geometry Geometric Methods for 
Digital Picture Analysis  
    Reinhard Klette  and  Azriel 
Rosenfeld  

    Digital Video and HDTV Algorithms and 
Interfaces  
    Charles Poynton  

    Real-Time Shader Programming  
   R on  F osner  

    Complete Maya Programming: An Extensive 
Guide to MEL and the C      �  �   API  
   D avid  A. D. G ould  

    Texturing  &  Modeling: A Procedural 
Approach, Th ird Edition  
    David S. Ebert, F. Kenton Musgrave, 
Darwyn Peachey, Ken Perlin,  and 
 Steven Worley  

    Geometric Tools for Computer Graphics  
    Philip Schneider  and  David H. 
Eberly  

    Understanding Virtual Reality: Interface, 
Application, and Design  
   W illiam  B. S herman  and A lan  R. 
C raig  

    Jim Blinn’s Corner: Notation, Notation, 
Notation  
   J im  B linn  

    Level of Detail for 3D Graphics  
    David Luebke, Martin Reddy, 
Jonathan D. Cohen, Amitabh 
Varshney, Benjamin Watson,  and 
 Robert Huebner  

    Pyramid Algorithms: A Dynamic 
Programming Approach to Curves and 
Surfaces for Geometric Modeling  
    Ron Goldman  

    Non-Photorealistic Computer Graphics: 
Modeling, Rendering, and Animation  
    Thomas Strothotte  and  Stefan 
Schlechtweg  

    Curves and Surfaces for CAGD: A Practical 
Guid e, Fifth Edition 
    Gerald Farin  

    Subdivision Methods for Geometric Design: 
A Constructive Approach  
    Joe Warren  and  Henrik Weimer  

    Computer Animation: Algorithms and 
Techniques  
    Rick Parent  

    Th e Computer Animator’s Technical 
Handbook  
    Lynn Pocock  and  Judson Rosebush  

    Advanced RenderMan: Creating CGI for 
Motion Pictures  
    Anthony A. Apodaca  and  Larry Gritz  

    Curves and Surfaces in Geometric 
Modeling: Th eory and Algorithms  
   J ean  G allier  

    Andrew Glassner’s Notebook: Recreational 
Computer Graphics  
    Andrew S. Glassner  

    Warping and Morphing of Graphical Objects  
    Jonas Gomes, Lucia Darsa, Bruno 
Costa,  and  Luiz Velho  

    Jim Blinn’s Corner: Dirty Pixels  
   J im  B linn  

    Rendering with Radiance: Th e Art and 
Science of Lighting Visualization  
    Greg Ward Larson  and  Rob 
Shakespeare  

    Introduction to Implicit Surfaces  
   Edited by J ules  B loomenthal  

    Jim Blinn’s Corner: A Trip Down the 
Graphics Pipeline  
   J im  B linn  

    Interactive Curves and Surfaces: A 
Multimedia Tutorial on CAGD  
    Alyn Rockwood  and 
 Peter Chambers  

    Wavelets for Computer Graphics: Th eory 
and Applications  
   E ric  J. S tollnitz , T ony  D. D eRose , 
and D avid  H. S alesin  

    Principles of Digital Image Synthesis  
    Andrew S. Glassner  

    Radiosity  &  Global Illumination  
    François X. Sillion  and  Claude Puech  

    Knotty: A B-Spline Visualization Program  
    Jonathan Yen  

    User Interface Management Systems: 
Models and Algorithms  
   D an  R. O lsen , Jr. 

    Making Th em Move: Mechanics, Control, 
and Animation of Articulated Figures  
   Edited by N orman  I. B adler , B rian  
A. B arsky , and D avid  Z eltzer  

    Geometric and Solid Modeling: An 
Introduction  
    Christoph M. Hoffmann  

    An Introduction to Splines for Use in 
Computer Graphics and Geometric Modeling  
   R ichard  H. B artels , J ohn  C. B eatty , 
and B rian  A. B arsky  



         Learning 
Processing
A Beginner’s Guide to 
Programming Images, 
Animation, and Interaction

Daniel Shiffman

AMSTERDAM • BOSTON • HEIDELBERG • LONDON  

NEW YORK • OXFORD • PARIS • SAN DIEGO  

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann Publishers is an imprint of Elsevier



   Morgan Kaufmann Publishers is an imprint of Elsevier 
   30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 

   Copyright © 2008, Elsevier Inc. All rights reserved. 

   Designations used by companies to distinguish their products are often claimed as trademarks or registered 
trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names appear 
in initial capital or all capital letters. All trademarks that appear or are otherwise referred to in this work belong to 
their respective owners. Neither Morgan Kaufmann Publishers nor the authors and other contributors of this 
work have any relationship or affi  liation with such trademark owners nor do such trademark owners confi rm, 
endorse, or approve the contents of this work. Readers, however, should contact the appropriate companies for
more information regarding trademarks and any related registrations. 

   No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by 
any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written permission 
of the publisher. 

   Permissions may be sought directly from Elsevier’s Science  &  Technology Rights Department in Oxford, UK: 
phone: ( � 44) 1865 843830, fax: ( � 44) 1865 853333, E-mail: permissions@elsevier.com. You may also 
complete your request online via the Elsevier homepage ( http://www.elsevier.com ) by selecting  “ Support  &  Contact ”  
then  “ Copyright and Permission ”  and then  “ Obtaining Permissions. ”  

    Library of Congress Cataloging-in-Publication Data  
   Application submitted. 

   ISBN: 978-0-12-373602-4 

   For information on all Morgan Kaufmann publications, visit our 
Web site at   www.mkp.com   or   www.books.elsevier.com   

Typset by Charon Tec Ltd., A Macmillan Company (www.macmillansolutions.com).

   Printed in the United States of America. 

   08 09 10 11 12 5 4 3 2 1 



        Contents

Acknowledgments vii
Introduction ix

     Lesson 1: The Beginning    1
   Chapter 1: Pixels  3
   Chapter 2: Processing 17 
   Chapter 3: Interaction 31 

     Lesson 2: Everything You Need to Know    43
   Chapter 4: Variables  45
   Chapter 5: Conditionals  59
   Chapter 6: Loops  81

     Lesson 3: Organization    99
   Chapter 7: Functions  101
   Chapter 8: Objects  121

     Lesson 4: More of the Same    139
   Chapter 9: Arrays  141

     Lesson 5: Putting It All Together    163
   Chapter 10: Algorithms  165
   Chapter 11: Debugging  191
   Chapter 12: Libraries  195

     Lesson 6: The World Revolves Around You    199
   Chapter 13: Mathematics  201
   Chapter 14: Translation and Rotation (in 3D!)  227

     Lesson 7: Pixels Under a Microscope    253
   Chapter 15: Images  255
   Chapter 16: Video  275

     Lesson 8: The Outside World    303
   Chapter 17: Text  305
   Chapter 18: Data Input  325
   Chapter 19: Data Streams   357

     Lesson 9: Making Noise    379
   Chapter 20: Sound  381
   Chapter 21: Exporting  397

    Lesson 10: Beyond Processing    407
   Chapter 22: Advanced Object-Oriented Programming  409
   Chapter 23: Java  423

  Appendix: Common Errors 439 
  Index 447



This page intentionally left blank



          Acknowledgments 
   In the fall of 2001, I wandered into the Interactive Telecommunications Program in the Tisch School of 
the Arts at New York University having not written a line of code since some early 80’s experiments in 
BASIC on an Apple II     �     . Th ere, in a fi rst semester course entitled Introduction to Computational Media, 
I discovered programming. Without the inspiration and support of ITP, my home since 2001, this book 
would have never been written. 

   Red Burns, the department’s chair and founder, has supported and encouraged me in my work for the 
last seven years. Dan O’Sullivan has been my teaching mentor and was the fi rst to suggest that I try a 
course in  Processing  at ITP, giving me a reason to start putting together programming tutorials. Shawn 
Van Every sat next to me in the offi  ce throughout the majority of the writing of this book, providing 
helpful suggestions, code, and a great deal of moral support along the way.  Tom Igoe’s work with physical 
computing provided inspiration for this book, and he was particularly helpful as a resource while putting 
together examples on network and serial communication. And it was Clay Shirky who I can thank for 
one day stopping me in the hall to tell me I should write a book in the fi rst place. Clay also provided a 
great deal of feedback on early drafts. 

   All of my fellow computational media teachers at ITP have provided helpful suggestions and feedback 
along the way: Danny Rozin (the inspiration behind Chapters 15 and 16), Amit Pitaru (who helped in 
particular with the chapter on sound), Nancy Lewis, James Tu, Mark Napier, Chris Kairalla, and Luke 
Dubois. ITP faculty members Marianne Petit, Nancy Hechinger, and Jean-Marc Gauthier have provided 
inspiration and support throughout the writing of this book. Th e rest of the faculty and staff  at ITP have 
also made this possible: George Agudow, Edward Gordon, Midori Yasuda, Megan Demarest, Robert 
Ryan, John Duane, Marlon Evans, and Tony Tseng. 

   Th e students of ITP, too numerous to mention, have been an amazing source of feedback throughout 
this process, having used much of the material in this book in trial runs for various courses. I have stacks 
of pages with notes scrawled along the margins as well as a vast archive of e-mails with corrections, 
comments, and generous words of encouragement. 

   I am also indebted to the energetic and supportive community of  Processing  programmers and artists. I’d 
probably be out of a job if it weren’t for Casey Reas and Benjamin Fry who created  Processing . I’ve learned 
half of what I know simply from reading through the  Processing  source code; the elegant simplicity of the 
 Processing  language, web site, and IDE has made programming accessible and fun for all of my students. 
I’ve received advice, suggestions, and comments from many  Processing  programmers including Tom 
Carden, Marius Watz, Karsten Schmidt, Robert Hodgin, Ariel Malka, Burak Arikan, and Ira Greenberg. 
Th e following teachers were also helpful test driving early versions of the book in their courses: Hector 
Rodriguez, Keith Lam, Liubo Borissov, Rick Giles, Amit Pitaru, David Maccarella, Jeff  Gray, and 
Toshitaka Amaoka. 

   Peter Kirn and Douglas Edric Stanley provided extraordinarily detailed comments and feedback during 
the technical review process and the book is a great deal better than it would have been without their 
eff orts. Demetrie Tyler did a tremendous job working on the visual design of the cover and interior of this 



book, making me look much cooler than I am. And a thanks to David Hindman, who worked on helping 
me organize the screenshots and diagrams. 

   I’d also like to thank everyone at Morgan Kaufmann/Elsevier who worked on producing the book: 
Gregory Chalson, Tiff any Gasbarrini, Jeff  Freeland, Danielle Monroe, Matthew Cater, Michele Cronin, 
Denise Penrose, and Mary James. 

  Finally, and most important, I’d like to thank my wife, Aliki Caloyeras, who graciously stayed awake 
whenever I needed to talk through the content of this book (and even when I felt the need to practice 
material for class) my parents, Doris and Bernard Shiff man; and my brother, Jonathan Shiff man, who all 
helped edit some of the very fi rst pages of this book, even while on vacation. 

viii Acknowledgments



          Introduction 

    What is this book? 
   Th is book tells a story. It is a story of liberation, of taking the fi rst steps toward understanding the 
foundations of computing, writing your own code, and creating your own media without the bonds of 
existing software tools. Th is story is not reserved for computer scientists and engineers. Th is story is 
for you.  

    Who is this book for? 
   Th is book is for the beginner. If you have never written a line of code in your life, you are in the right 
place. No assumptions are made, and the fundamentals of programming are covered slowly, one by one, 
in the fi rst nine chapters of this book. You do not need any background knowledge besides the basics of 
operating a computer—turning it on, browsing the web, launching an application, that sort of thing. 

   Because this book uses  Processing  (more on  Processing  in a moment) ,  it is especially good for someone 
studying or working in a visual fi eld, such as graphic design, painting, sculpture, architecture, fi lm, video, 
illustration, web design, and so on. If you are in one of these fi elds (at least one that involves using a 
computer), you are probably well versed in a particular software package, possibly more than one, such as 
Photoshop, Illustrator, AutoCAD, Maya, After Eff ects, and so on. Th e point of this book is to release you, 
at least in part, from the confi nes of existing tools. What can you make, what can you design if, instead of 
using someone else’s tools, you write your own? If this question interests you, you are in the right place. 

   If you have some programming experience, but are interested in learning about  Processing , this book could 
also be useful. Th e early chapters will provide you with a quick refresher (and solid foundation) for the 
more advanced topics found in the second half of the book.  

    What is  Processing ?
   Let’s say you are taking Computer Science 101, perhaps taught with the Java programming language. 
Here is the output of the fi rst example program demonstrated in class:     



x Introduction

   Traditionally, programmers are taught the basics via command line output: 

    1.     TEXT IN  →  You write your code as text.  
    2.     TEXT OUT  →  Your code produces text output on the command line.  
    3.     TEXT INTERACTION  →  Th e user can enter text on the command line to interact with the program.    

   Th e output  “ Hello, World! ”  of this example program is an old joke, a programmer’s convention where the text 
output of the fi rst program you learn to write in any given language says  “ Hello, World! ”  It fi rst appeared in a 
1974 Bell Laboratories memorandum by Brian Kernighan entitled  “ Programming in C: A Tutorial. ”  

   Th e strength of learning with  Processing  is its emphasis on a more intuitive and visually responsive 
environment, one that is more conducive to artists and designers learning programming. 

    1.     TEXT IN  →  You write your code as text.  
    2.     VISUALS OUT  →  Your code produces visuals in a window.  
    3.     MOUSE INTERACTION  →  Th e user can interact with those visuals via the mouse (and more as 

we will see in this book!).    

    Processing ’s  “ Hello, World! ”  might look something like this:     

   Hello, Shapes! 

   Th ough quite friendly looking, it is nothing spectacular (both of these fi rst programs leave out #3: 
interaction), but neither is  “ Hello, World! ”  However, the focus, learning through immediate visual 
feedback, is quite diff erent. 

    Processing  is not the fi rst language to follow this paradigm. In 1967, the Logo programming language was 
developed by Daniel G. Bobrow, Wally Feurzeig, and Seymour Papert. With Logo, a programmer writes 
instructions to direct a turtle around the screen, producing shapes and designs. John Maeda’s  Design By 
Numbers  (1999) introduced computation to visual designers and artists with a simple, easy to use syntax. 



Introduction  xi

While both of these languages are wonderful for their simplicity and innovation, their capabilities are 
limited. 

    Processing , a direct descendent of  Logo  and  Design by Numbers , was born in 2001 in the  “ Aesthetics and 
Computation ”  research group at the Massachusetts Institute of Technology Media Lab. It is an open 
source initiative by Casey Reas and Benjamin Fry, who developed  Processing  as graduate students studying 
with John Maeda. 

  “Processing is an open source programming language and environment for people who want to program 
images, animation, and sound. It is used by students, artists, designers, architects, researchers, and hobbyists for 
learning, prototyping, and production. It is created to teach fundamentals of computer programming within a 
visual context and to serve as a software sketchbook and professional production tool. Processing is developed by 
artists and designers as an alternative to proprietary software tools in the same domain.”  
  — www.processing.org     

   To sum up,  Processing  is awesome. First of all, it is free. It doesn’t cost a dime. Secondly, because  Processing  is 
built on top of the Java programming language (this is explored further in the last chapter of this book), it is 
a fully functional language without some of the limitations of  Logo  or  Design by Numbers . Th ere is very little 
you can’t do with  Processing . Finally,  Processing  is open source. For the most part, this will not be a crucial 
detail of the story of this book. Nevertheless, as you move beyond the beginning stages, this philosophical 
principle will prove invaluable. It is the reason that such an amazing community of developers, teachers, 
and artists come together to share work, contribute ideas, and expand the features of  Processing . 

   A quick surf-through of the  processing.org  Web site reveals this vibrant and creative community. Th ere, 
code is shared in an open exchange of ideas and artwork among beginners and experts alike. While the 
site contains a complete reference as well as a plethora of examples to get you started, it does not have a 
step-by-step tutorial for the true beginner. Th is book is designed to give you a jump start on joining and 
contributing to this community by methodically walking you through the fundamentals of programming 
as well as exploring some advanced topics. 

   It is important to realize that, although without  Processing  this book might not exist, this book is not a 
 Processing  book per se. Th e intention here is to teach you programming. We are choosing to use  Processing  
as our learning environment, but the focus is on the core computational concepts, which will carry you 
forward in your digital life as you explore other languages and environments.  

    But shouldn’t I be Learning __________ ? 
   You know you want to. Fill in that blank. You heard that the next big thing is that programming language 
and environment Flibideefl obidee. Sure it sounds made up, but that friend of yours will not stop talking 
about how awesome it is. How it makes everything soooo easy. How what used to take you a whole day 
to program can be done in fi ve minutes. And it works on a Mac. And a PC! And a toaster oven! And you 
can program your pets to speak with it. In Japanese! 

   Here’s the thing. Th at magical language that solves all your problems does not exist. No language is 
perfect, and  Processing  comes with its fair share of limitations and fl aws.  Processing , however, is an excellent 
place to start (and stay). Th is book teaches you the fundamentals of programming so that you can apply 
them throughout your life, whether you use  Processing , Java, Actionscript, C, PHP, or some other language. 



xii Introduction

   It is true that for some projects, other languages and environments can be better. But  Processing  is really 
darn good for a lot of stuff , especially media-related and screen-based work. A common misconception is 
that  Processing  is just for fi ddling around; this is not the case. People (myself included) are out there using 
 Processing  from day number 1 to day number 365 of their project. It is used for web applications, art projects 
in museums and galleries, and exhibits and installations in public spaces. Most recently, I used  Processing  to 
develop a real-time graphics video wall system (  http://www.mostpixelsever.com  ) that can display content on a 
120 by 12 foot (yes, feet!) video wall in the lobby of InterActive Corps ’  New York City headquarters. 

   Not only is  Processing  great for actually doing stuff , but for learning, there really isn’t much out there 
better. It is free and open source. It is simple. It is visual. It is fun. It is object-oriented (we will get to this 
later.) And it does actually work on Macs, PCs, and Linux machines (no talking dogs though, sorry). 

   So I would suggest to you that you stop worrying about what it is you should be using and focus on 
learning the fundamentals with  Processing . Th at knowledge will take you above and beyond this book to 
any language you want to tackle.  

    Write in this book! 
   Let’s say you are a novelist. Or a screenwriter. Is the only time you spend writing the time spent sitting 
and typing at a computer? Or (gasp) a typewriter? Most likely, this is not the case. Perhaps ideas swirl in 
your mind as you lie in bed at night. Or maybe you like to sit on a bench in the park, feed the pigeons, 
and play out dialogue in your head. And one late night, at the local pub, you fi nd yourself scrawling out a 
brilliant plot twist on a napkin. 

   Well, writing software, programming, and creating code is no diff erent. It is really easy to forget this since 
the work itself is so inherently tied to the computer. But you must fi nd time to let your mind wander, 
think about logic, and brainstorm ideas away from the chair, the desk, and the computer. Personally, I do 
all my best programming while jogging. 

   Sure, the actual typing on the computer part is pretty important. I mean, you will not end up with a life-
changing, working application just by laying out by the pool. But thinking you always need to be hunched 
over the glare of an LCD screen will not be enough. 

   Writing all over this book is a step in the right direction, ensuring you will practice thinking through 
code away from the keyboard. I have included many exercises in the book that incorporate a  “ fi ll in 
the blanks ”  approach. (All of these fi ll in the blanks exercises have answers on the book’s Web site, 
 http://www.learningprocessing.com,  so you can check your work.) Use these pages! When an idea 
inspires you, make a note and write it down. Th ink of the book as a workbook and sketchbook for your 
computational ideas. (You can of course use your own sketchbook, too.) 

   I would suggest you spend half your time reading this book away from the computer and the other half, 
side by side with your machine, experimenting with example code along the way.  

    How should I read this book? 
   It is best to read this book in order. Chapter 1, Chapter 2, Chapter 3, and so on. You can get a bit more 
relaxed about this after the end of Chapter 9 but in the beginning it is pretty important. 



Introduction  xiii

   Th e book is designed to teach you programming in a linear fashion. A more advanced text might operate 
more like a reference where you read bits and pieces here and there, moving back and forth throughout 
the book. But here, the fi rst half of the book is dedicated to making one example, and building the 
features of that example one step at a time (more on this in a moment). In addition, the fundamental 
elements of computer programming are presented in a particular order, one that comes from several years 
of trial and error with a group of patient and wonderful students in New York University’s Interactive 
Telecommunications Program ( “ ITP ” ) at the Tisch School of the Arts (  http://itp.nyu.edu  ). 

   Th e chapters of the book (23 total) are grouped into lessons (10 total). Th e fi rst nine chapters introduce 
computer graphics, and cover the fundamental principles behind computer programming. Chapters 10 
through 12 take a break from learning new material to examine how larger projects are developed with 
an incremental approach. Chapters 13 through 23 expand on the basics and off er a selection of more 
advanced topics ranging from 3D, to incorporating live video, to data visualization. 

   Th e  “ Lessons ”  are off ered as a means of dividing the book into digestible chunks. Th e end of a lesson marks 
a spot at which I suggest you take a break from reading and attempt to incorporate that lesson’s chapters 
into a project. Suggestions for these projects are off ered (but they are really just that: suggestions).  

    Is this a textbook? 
   Th is book is designed to be used either as a textbook for an introductory level programming course or for 
self-instruction. 

   I should mention that the structure of this book comes directly out of the course  “ Introduction to 
Computational Media ”  at ITP. Without the help my fellow teachers of this class (Dan O’Sullivan, Danny 
Rozin, Chris Kairalla, Shawn Van Every, Nancy Lewis, Mark Napier, and James Tu) and hundreds of 
students (I wish I could name them all here), I don’t think this book would even exist. 

   To be honest, though, I am including a bit more material than can be taught in a beginner level one 
semester course. Out of the 23 chapters, I probably cover about 18 of them in detail in my class (but make 
reference to everything in the book at some point). Nevertheless, whether or not you are reading the book 
for a course or learning on your own, it is reasonable that you could consume the book in a period of a 
few months. Sure, you can read it faster than that, but in terms of actually writing code and developing 
projects that incorporate all the material here, you will need a fairly signifi cant amount of time. As 
tempting as it is to call this book  “ Learn to Program with 10 Lessons in 10 Days! ”  it is just not realistic. 

   Here is an example of how the material could play out in a 14 week semester course.

   Week 1  Lesson 1: Chapters 1–3 

   Week 2  Lesson 2: Chapters 4–6 

   Week 3  Lesson 3: Chapters 7–8 

   Week 4  Lesson 4: Chapter 9 

   Week 5  Lesson 5: Chapter 10–11 

   Week 6  Midterm! (Also, continue Lesson 5: Chapter 12) 



xiv Introduction

                  Will this be on the test? 
   A book will only take you so far. Th e real key is practice, practice, practice. Pretend you are 10 years old 
and taking violin lessons. Your teacher would tell you to practice every day. And that would seem perfectly 
reasonable to you. Do the exercises in this book. Practice every day if you can. 

   Sometimes when you are learning, it can be diffi  cult to come up with your own ideas. Th ese exercises are 
there so that you do not have to. However, if you have an idea for something you want to develop, you 
should feel free to twist and tweak the exercises to fi t with what you are doing. 

   A lot of the exercises are tiny little drills that can be answered in a few minutes. Some are a bit harder 
and might require up to an hour. Along the way, however, it is good to stop and work on a project that 
takes longer, a few hours, a day, or a week. As I just mentioned, this is what the  “ lesson ”  structure is for. 
I suggest that in between each lesson, you take a break from reading and work on making something in 
 Processing . A page with project suggestions is provided for each lesson. 

   All of the answers to all of the exercises can be found on this book’s web site. Speaking of which  …   

    Do you have a web site? 
   Th e Web site for this book is:     http://www.learningprocessing.com 

   Th ere you will fi nd the following things: 

     •      Answers to all exercises in the book.  
     •      Downloadable versions of all code in the book.  
     •      Online versions of the examples (that can be put online) in the book.  
     •      Corrections of any errors in the book.  
     •      Additional tips and tutorials beyond material in the book.  
     •      Questions and comments page.    

   Since many of the examples in this book use color and are animated, the black and white, static 
screenshots provided in the pages here will not give you the whole picture. As you are reading, you can 
refer to the web site to view the examples running in your browser as well as download them to run 
locally on your computer. 

   Week 7  Lesson 6: Chapter 13–14 

   Week 8  Lesson 7: Chapter 15–16 

   Week 9  Lesson 8: Chapters 17–19 

   Week 10  Lesson 9: Chapters 20–21 

   Week 11  Lesson 10: Chapters 22–23 

   Week 12  Final Project Workshop 

   Week 13  Final Project Workshop 

   Week 14  Final Project Presentations 



Introduction  xv

   Th is book’s web site is not a substitute for the amazing resource that is the offi  cial  Processing  web site: 
  http://www.processing.org  . Th ere, you will fi nd the  Processing  reference, many more examples, and a lively 
forum.  

    Take It One Step at a Time 
    Th e Philosophy of Incremental Development 

   Th ere is one more thing we should discuss before we embark on this journey together. It is an important 
driving force behind the way I learned to program and will contribute greatly to the style of this book. 
As coined by a former professor of mine, it is called the  “ philosophy of incremental development. ”  Or 
perhaps, more simply, the  “ one-step-at-a-time approach. ”  

   Whether you are a total novice or a coder with years of experience, with any programming project, it is 
crucial not to fall into the trap of trying to do too much all at once. Your dream might be to create the 
uber- Processing  program that, say, uses Perlin noise to procedurally generate textures for 3D vertex shapes 
that evolve via the artifi cial intelligence of a neural network that crawls the web mining for today’s news 
stories, displaying the text of these stories onscreen in colors taken from a live video feed of a viewer in 
front of the screen who can control the interface with live microphone input by singing. 

   Th ere is nothing wrong with having grand visions, but the most important favor you can do for yourself 
is to learn how to break those visions into small parts and attack each piece slowly, one at a time. Th e 
previous example is a bit silly; nevertheless, if you were to sit down and attempt to program its features all 
at once, I am pretty sure you would end up using a cold compress to treat your pounding headache. 

   To demonstrate, let’s simplify and say that you aspire to program the game Space Invaders (see:   http://
en.wikipedia.org/wiki/Space_Invaders  ). While this is not explicitly a game programming book, the skills to 
accomplish this goal will be found here. Following our newfound philosophy, however, we know we need 
to develop one step at a time, breaking down the problem of programming Space Invaders into small 
parts. Here is a quick attempt: 

    1.     Program the spaceship.  
    2.     Program the invaders.  
    3.     Program the scoring system.    

   Great, we divided our program into three steps! Nevertheless, we are not at all fi nished. Th e key is to 
divide the problem into the smallest pieces possible, to the point of absurdity, if necessary. You will learn 
to scale back into larger chunks when the time comes, but for now, the pieces should be so small that 
they seem ridiculously oversimplifi ed. After all, if the idea of developing a complex game such as Space 
Invaders seems overwhelming, this feeling will go away if you leave yourself with a list of steps to follow, 
each one simple and easy. 

   With that in mind, let’s try a little harder, breaking Step 1 from above down into smaller parts. Th e idea 
here is that you would write six programs, the fi rst being the simplest:  display a triangle . With each step, 
we add a small improvement:  move the triangle.  As the program gets more and more advanced, eventually 
we will be fi nished. 



xvi Introduction

    1.1     Draw a triangle onscreen. Th e triangle will be our spaceship.  
    1.2     Position the triangle at the bottom of the screen.  
    1.3     Position the triangle slightly to the right of where it was before.  
    1.4     Animate the triangle so that it moves from position left to right.  
    1.5     Animate the triangle from left to right only when the right-arrow key is pressed.  
    1.6     Animate the triangle right to left when the left-arrow key is pressed.    

   Of course, this is only a small fraction of all of the steps we need for a full Space Invaders game, but 
it demonstrates a vital way of thinking. Th e benefi ts of this approach are not simply that it makes 
programming easier (which it does), but that it also makes  “ debugging ”  easier. 

   Debugging      1    refers to the process of fi nding defects in a computer program and fi xing them so that the 
program behaves properly. You have probably heard about bugs in, say, the Windows operating system: 
miniscule, arcane errors deep in the code. For us, a bug is a much simpler concept: a mistake. Each time 
you try to program something, it is very likely that  something  will not work as you expected, if at all. So 
if you start out trying to program everything all at once, it will be very hard to fi nd these bugs. Th e one-
step-at-a-time methodology, however, allows you to tackle these mistakes one at a time, squishing the 
bugs. 

   In addition, incremental development lends itself really well to  object-oriented programming , a core 
principle of this book. Objects, which will be introduced in Lesson 3, Chapter 8, will help us to develop 
projects in modular pieces as well as provide an excellent means for organizing (and sharing) code. 
Reusability will also be key. For example, if you have programmed a spaceship for Space Invaders and 
want to start working on asteroids, you can grab the parts you need (i.e., the moving spaceship code), and 
develop the new pieces around them.   

   Algorithms 
   When all is said and done, computer programming is all about writing  algorithms . An algorithm is 
a sequential list of instructions that solves a particular problem. And the philosophy of incremental 
development (which is essentially an algorithm for you, the human being, to follow) is designed to make 
it easier for you to write an algorithm that implements your idea. 

   As an exercise, before you get to Chapter 1, try writing an algorithm for something you do on a daily 
basis, such as brushing your teeth. Make sure the instructions seem comically simple (as in  “ Move the 
toothbrush one centimeter to the left ” ). 

   Imagine that you had to provide instructions on how to accomplish this task to someone entirely 
unfamiliar with toothbrushes, toothpaste, and teeth. Th at is how it is to write a program. A computer is 
nothing more than a machine that is brilliant at following precise instructions, but knows nothing about 
the world at large. And this is where we begin our journey, our story, our new life as a programmer. We 
begin with learning how to talk to our friend, the computer. 

    1  Th e term  “ debugging ”  comes from the apocryphal story of a moth getting stuck in the relay circuits of one of computer scientist 
Grace Murray Hopper’s computers.    



Introduction  xvii

    Some suggestions:  

     •       Do you do different things based on conditions? How might you use the words 
 “ if  ”  or  “ otherwise ”  in your instructions? (For example: if the water is too cold, 
increase the warm water. Otherwise, increase cold water.)  

     •       Use the word  “ repeat ”  in your instructions. For example: Move the brush up 
and down. Repeat 5 times.    

   Also, note that we are starting with Step # 0. In programming, we often like to count 
starting from 0 so it is good for us to get used to this idea right off  the bat! 

     How to brush your teeth by    ___________________________________________

     Step 0. ___________________________________________________________   

     Step 1. ___________________________________________________________   

     Step 2. ___________________________________________________________   

     Step 3. ___________________________________________________________   

     Step 4. ___________________________________________________________   

     Step 5. ___________________________________________________________   

     Step 6. ___________________________________________________________   

     Step 7. ___________________________________________________________   

     Step 8. ___________________________________________________________   

  Step 9. ___________________________________________________________      

    Introductory Exercise: Write instructions for brushing your teeth.  



This page intentionally left blank



Lesson One
The Beginning

1 Pixels
2 Processing
3 Interaction



This page intentionally left blank



Pixels  3

                             1       Pixels  
          “ A journey of a thousand miles begins with a single step. ”  
 —Lao-tzu   

   In this chapter:
–       Specifying pixel coordinates.  
 –        Basic shapes: point, line, rectangle, ellipse.  
 –        Color: grayscale,  “ RGB. ”   
–       Color transparency.    

   Note that we are not doing any programming yet in this chapter! We are just dipping our feet in the water and 
getting comfortable with the idea of creating onscreen graphics with text-based commands, that is,  “ code ” ! 

    1.1       Graph Paper 
  Th is book will teach you how to program in the context of computational media, and it will use the 
development environment  Processing  ( http://www.processing.org ) as the basis for all discussion and 
examples. But before any of this becomes relevant or interesting, we must fi rst channel our eighth grade 
selves, pull out a piece of graph paper, and draw a line. Th e shortest distance between two points is a good 
old fashioned line, and this is where we begin, with two points on that graph paper.

0

0
1
2
3
4
5

Point B (4,5)

Point A
(1,0)

x-axis

y-axis
1 2 3 4

 fi g. 1.1              

    Figure 1.1  shows a line between point A (1,0) and point B (4,5). If you wanted to direct a friend of yours 
to draw that same line, you would give them a shout and say  “ draw a line from the point one-zero to 
the point four-fi ve, please. ”  Well, for the moment, imagine your friend was a computer and you wanted 
to instruct this digital pal to display that same line on its screen. Th e same command applies (only this 
time you can skip the pleasantries and you will be required to employ a precise formatting). Here, the 
instruction will look like this: 

    line(1,0,4,5);    

  Congratulations, you have written your fi rst line of computer code! We will get to the precise formatting 
of the above later, but for now, even without knowing too much, it should make a fair amount of sense. 
We are providing a  command  (which we will refer to as a  “ function ” ) for the machine to follow entitled 
 “ line. ”  In addition, we are specifying some  arguments  for how that line should be drawn, from point 



4 Learning Processing

A (0,1) to point B (4,5). If you think of that line of code as a sentence, the  function  is a  verb  and the 
 arguments  are the  objects  of the sentence. Th e code sentence also ends with a semicolon instead of a period. 

Verb Object Object

Draw a line from 0,1 to 4,5

 fi g. 1.2              

� �
�

�

�

�
(0,0)

(0,0)

y-axis y-axis

x-axis x-axis

Eighth grade Computer
 fi g. 1.3              

   Th e key here is to realize that the computer screen is nothing more than a fancier piece of graph paper. 
Each pixel of the screen is a coordinate—two numbers, an  “ x ”  (horizontal) and a  “ y ”  (vertical)—that 
determine the location of a point in space. And it is our job to specify what shapes and colors should 
appear at these pixel coordinates. 

   Nevertheless, there is a catch here. Th e graph paper from eighth grade ( “ Cartesian coordinate system ” ) 
placed (0,0) in the center with the y-axis pointing up and the x-axis pointing to the right (in the positive 
direction, negative down and to the left). Th e coordinate system for pixels in a computer window, 
however, is reversed along the  y -axis. (0,0) can be found at the top left with the positive direction to the 
right horizontally and down vertically. See  Figure 1.3   . 

    Exercise 1-1: Looking at how we wrote the instruction for line  “ line(1,0,4,5); ”  how would 
you guess you would write an instruction to draw a rectangle? A circle? A triangle? Write 
out the instructions in English and then translate it into  “ code. ”   

   English: ________________________________________________________________ _

   Code: ______________________________________________________ ___________

   English: ______________________________________________________ ___________

   Code: ______________________________________________________ ___________

   English: ______________________________________________________ ___________

   Code: ______________________________________________________ ___________

    Come back later and see how your guesses matched up with how Processing actually works.   



Pixels  5

   1.2       Simple Shapes 
   Th e vast majority of the programming examples in this book will be visual in nature. You may ultimately 
learn to develop interactive games, algorithmic art pieces, animated logo designs, and (insert your own 
category here) with  Processing , but at its core, each visual program will involve setting pixels. Th e simplest 
way to get started in understanding how this works is to learn to draw primitive shapes. Th is is not unlike 
how we learn to draw in elementary school, only here we do so with code instead of crayons. 

   Let’s start with the four primitive shapes shown in  Figure 1.4   . 

Point Line Rectangle Ellipse
 fi g. 1.4              

0
0 1 2 3 4

x-axis

y-axis

5 6 7 8 9

1
2
3
4

Point (4,5);

x

5
6
7
8
9

y

 fi g. 1.5              

   For each shape, we will ask ourselves what information is required to specify the location and size (and 
later color) of that shape and learn how  Processing  expects to receive that information. In each of the 
diagrams below ( Figures 1.5    through 1.11), assume a window with a width of 10 pixels and height of 
10 pixels. Th is isn’t particularly realistic since when we really start coding we will most likely work with 
much larger windows (10      �      10 pixels is barely a few millimeters of screen space). Nevertheless for 
demonstration purposes, it is nice to work with smaller numbers in order to present the pixels as they 
might appear on graph paper (for now) to better illustrate the inner workings of each line of code. 

   A point is the easiest of the shapes and a good place to start. To draw a point, we only need an  x  and  y  
coordinate as shown in  Figure 1.5 . A line isn’t terribly diffi  cult either. A line requires two points, as shown 
in  Figure 1.6   . 

 fi g. 1.6              

0
0 1 2 3 4

x-axis

y-axis

5 6 7 8 9

1
2
3
4

Point B (8,3)

line (1,3,8,3);

5
6
7
8
9

Point A (1,3)

yx
Point A

yx
Point B



6 Learning Processing

0
0 1 2 3 4

x-axis

y-axis

5 6 7 8 9

1
2
3
4

rectMode (CENTER);
rect (3,3,5,5);

5
6
7
8
9

center
(3,3)

center
x

center
y

width
height

 fi g. 1.8              

0
0 1 2 3 4

x-axis

y-axis

5 6 7 8 9

1
2
3
4 rect (2,3,5,4);

top left
x

Top left

top left
y

width

width

height

height
5
6
7
8
9

 fi g. 1.7              

   Finally, we can also draw a rectangle with two points (the top left corner and the bottom right corner). 
Th e mode here is  “ CORNERS ”  (see  Figure 1.9)   . 

Once we arrive at drawing a rectangle, things become a bit more complicated. In  Processing , a rectangle is 
specifi ed by the coordinate for the top left corner of the rectangle, as well as its width and height 
(see  Figure 1.7   ). 

   However, a second way to draw a rectangle involves specifying the centerpoint, along with width 
and height as shown in  Figure 1.8   . If we prefer this method, we fi rst indicate that we want to use the 
 “ CENTER ”  mode before the instruction for the rectangle itself. Note that  Processing  is case-sensitive. 
Incidentally, the default mode is  “ CORNER, ”  which is how we began as illustrated in  Figure 1.7 . 



Pixels  7

   Once we have become comfortable with the concept of drawing a rectangle, an ellipse is a snap. In fact, it 
is identical to   rect( )   with the diff erence being that an ellipse is drawn where the bounding box      1    (as shown 
in  Figure 1.11   ) of the rectangle would be. Th e default mode for   ellipse( )   is  “ CENTER ” , rather than 
 “ CORNER ”  as with   rect( )  . See  Figure 1.10   . 

0
0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

bottom right (8,7)

rectMode (CORNERS)
rect (5,5,8,7);

top left (5,5)

top left
x

bottom right x

bottom right y
top left

y

fi  g. 1.9              

        1 A bounding box of a shape in computer graphics is the smallest rectangle that includes all the pixels of that shape. For example, the 
bounding box of a circle is shown in  Figure 1.11 .

0

0 1 2 3 4 5 6 7 8 9

1
2
3
4 ellipseMode (CENTER);

ellipse (3,3,5,5);5
6
7
8
9

ellipseMode (CORNER);
ellipse (3,3,4,4);

0

0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

ellipseMode (CORNERS);
ellipse (5,5,8,7);

0

0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

 fi g. 1.10              

   It is important to acknowledge that in  Figure 1.10 , the ellipses do not look particularly circular.  Processing  
has a built-in methodology for selecting which pixels should be used to create a circular shape. Zoomed 
in like this, we get a bunch of squares in a circle-like pattern, but zoomed out on a computer screen, 
we get a nice round ellipse. Later, we will see that  Processing  gives us the power to develop our own 



8 Learning Processing

Triangle Arc Quad Curve
 fi g. 1.12              

algorithms for coloring in individual pixels (in fact, we can already imagine how we might do this using 
 “ point ”  over and over again), but for now, we are content with allowing the  “ ellipse ”  statement to do the 
hard work. 

   Certainly, point, line, ellipse, and rectangle are not the only shapes available in the  Processing  library 
of functions. In Chapter 2, we will see how the  Processing  reference provides us with a full list of 
available drawing functions along with documentation of the required arguments, sample syntax, and 
imagery. For now, as an exercise, you might try to imagine what arguments are required for some other 
shapes (Figure 1.12): 

    triangle( )  
    arc( )  
    quad( )  
    curve( )    

0

0 1 2 3 4
x-axis

y-axis

5 6 7 8 9

1
2
3
4
5
6
7
8
9

    line(0,0,9,6);  

    point(0,2);  

    point(0,4);  

    rectMode(CORNER);  

    rect(5,0,4,3);  

    ellipseMode(CENTER);  

    ellipse(3,7,4,4);            

    Exercise 1-2: Using the blank graph below, draw the primitive shapes specifi ed by the code.  

Circle’s bounding box

 fi g. 1.11              



Pixels  9

    Exercise 1-3: Reverse engineer a list of primitive shape drawing instructions for the diagram below. 

  

0

0 1 2 3 4

Note: There is more than one correct answer!

5 6 7 8 9

1
2
3
4
5
6
7
8
9

         

   __________________________________________________________________ 

   __________________________________________________________________ 

   __________________________________________________________________ 

   __________________________________________________________________ 

   __________________________________________________________________ 

   1.3       Grayscale Color 
   As we learned in Section 1.2, the primary building block for placing shapes onscreen is a pixel 
coordinate. You politely instructed the computer to draw a shape at a specifi c location with a specifi c size. 
Nevertheless, a fundamental element was missing—color. 

   In the digital world, precision is required. Saying  “ Hey, can you make that circle bluish-green? ”  will 
not do. Th erefore, color is defi ned with a range of numbers. Let’s start with the simplest case:  black and 
white  or  grayscale . In grayscale terms, we have the following: 0 means black, 255 means white. In between, 
every other number—50, 87, 162, 209, and so on—is a shade of gray ranging from black to white. See 
 Figure 1.13   .

0 50 87 162 209 255
 fi g. 1.13              

        Does 0–255 seem arbitary to you?      

   Color for a given shape needs to be stored in the computer’s memory. Th is memory is just a long 
sequence of 0’s and 1’s (a whole bunch of on or off  switches.) Each one of these switches is a 



10 Learning Processing

  By adding the   stroke( )   and   fi ll( )   functions  before  the shape is drawn, we can set the color. It is much like 
instructing your friend to use a specifi c pen to draw on the graph paper. You would have to tell your 
friend  before  he or she starting drawing, not after. 

 Th ere is also the function   background( )  , which sets a background color for the window where shapes will 
be rendered.

   Example 1-1: Stroke and fi ll 

   background(255);  
   stroke(0);  
   fill(150);  
   rect(50,50,75,100);  

stroke( )   or   fi ll( )   can be eliminated with the   noStroke( )   or   noFill( )   functions. 
Our instinct might be to say  “   stroke(0)   ”  for no outline, however, it is 
important to remember that 0 is not  “ nothing ” , but rather denotes the color 
black. Also, remember not to eliminate both—with   noStroke( )   and   noFill( )  , 
nothing will appear! 

  Understanding how this range works, we can now move to setting specifi c grayscale colors for the shapes 
we drew in Section 1.2. In  Processing , every shape has a   stroke( )   or a   fi ll( )   or both. Th e   stroke( )   is the 
outline of the shape, and the   fi ll( )   is the interior of that shape. Lines and points can only have   stroke( )  , for 
obvious reasons. 

  If we forget to specify a color, 
Processing  will use black (0) for the 
stroke( )   and white (255) for the 
fi ll( )   by default. Note that we are 
now using more realistic numbers 
for the pixel locations, assuming a 
larger window of size 200      �      200 
pixels. See  Figure 1.14.    

    rect(50,40,75,100);    

 fi g. 1.14              

 fi g. 1.15              

bit , eight of them together is a  byte . Imagine if we had eight bits (one byte) in sequence—how 
many ways can we confi gure these switches? Th e answer is (and doing a little research into binary 
numbers will prove this point) 256 possibilities, or a range of numbers between 0 and 255. We will 
use eight bit color for our grayscale range and 24 bit for full color (eight bits for each of the red, 
green, and blue color components; see Section 1.4).      

The outline of the rectangle is black

The interior of the rectangle is white

The background color is gray.



Pixels  11

background(150);

stroke(0);

line(0,0,100,100);

stroke(255);

noFill();

rect(25,25,50,50);

 fi g. 1.17              

   Example 1-2: noFill ( )

   background(255); 
   stroke(0); 
   noFill(); 
   ellipse(60,60,100,100); 

  If we draw two shapes at one time,  Processing  will always use the 
most recently specifi ed   stroke( )   and   fi ll( )  , reading the code from top to 
bottom. See  Figure 1.17   . 

 fi g. 1.16              

    Exercise 1-4: Try to guess what the instructions would be for the following screenshot.  

  
 __________________________________________________________________ 

   __________________________________________________________________ 

   __________________________________________________________________ 

   __________________________________________________________________ 

   __________________________________________________________________ 

   __________________________________________________________________ 

 __________________________________________________________________ 

 __________________________________________________________________ 

nofi ll( ) leaves the shape 
with only an outline



12 Learning Processing

   1.4       RGB Color 
  A nostalgic look back at graph paper helped us learn the fundamentals for pixel locations and size. 
Now that it is time to study the basics of digital color, we search for another childhood memory to get 
us started. Remember fi nger painting? By mixing three  “ primary ”  colors, any color could be generated. 
Swirling all colors together resulted in a muddy brown. Th e more paint you added, the darker it got. 

  Digital colors are also constructed by mixing three primary colors, but it works diff erently from paint. 
First, the primaries are diff erent: red, green, and blue (i.e.,  “ RGB ”  color). And with color on the screen, 
you are mixing light, not paint, so the mixing rules are diff erent as well. 

    •      Red      �      green        �      yellow  
    •      Red      �      blue        �      purple  
    •      Green      �      blue        �      cyan (blue-green)  
    •      Red      �      green      �      blue      �      white  
    •      No colors          �      black    

  Th is assumes that the colors are all as bright as possible, but of course, you have a range of color available, so 
some red plus some green plus some blue equals gray, and a bit of red plus a bit of blue equals dark purple. 

 While this may take some getting used to, the more you program and experiment with RGB color, the more 
it will become instinctive, much like swirling colors with your fi ngers. And of course you can’t say  “ Mix 
some red with a bit of blue, ”  you have to provide an exact amount. As with grayscale, the individual color 
elements are expressed as ranges from 0 (none of that color) to 255 (as much as possible), and they are listed 
in the order R, G, and B. You will get the hang of RGB color mixing through experimentation, but next we 
will cover some code using some common colors. 

  Note that this book will only show you black and white versions of each  Processing  sketch, but everything 
is documented online in full color at   http://www.learningprocessing.com   with RGB color diagrams found 
specifi cally at:   http://learningprocessing.com/color  .  

  Example 1-3: RGB color 

   background(255);  
   noStroke();  

   fill(255,0,0); 
   ellipse(20,20,16,16);  

   fill(127,0,0); 
   ellipse(40,20,16,16);  

   fill(255,200,200); 
   ellipse(60,20,16,16);  

Processing  also has a color selector to aid in choosing colors. Access this via TOOLS (from the 
menu bar)  →  COLOR SELECTOR. See  Figure 1.19   . 

 fi g. 1.18              

Bright red

Dark red

Pink (pale red).



Pixels  13

 fi g. 1.19              

  fill(0,100,0); ______________________________________ 

  fill(100); ______________________________________ 

  stroke(0,0,200); ______________________________________ 

  stroke(225); ______________________________________ 

  stroke(255,255,0); ______________________________________ 

  stroke(0,255,255); ______________________________________ 

  stroke(200,50,50); ______________________________________   

    Exercise 1-6: What color will each of the following lines of code generate?  

    Exercise 1-5: Complete the following program. Guess what RGB values to use (you will be 
able to check your results in Processing after reading the next chapter). You could also use the 
color selector, shown in                                            Figure 1.19  . 

    fill(________,________,________);

   ellipse(20,40,16,16); 

    fill(________,________,________); 

   ellipse(40,40,16,16); 

    fill(________,________,________); 

   ellipse(60,40,16,16); 

Bright blue

Dark purple

Yellow



14 Learning Processing

   1.5       Color Transparency 
  In addition to the red, green, and blue components of each color, there is an additional optional fourth 
component, referred to as the color’s  “ alpha. ”  Alpha means transparency and is particularly useful when 
you want to draw elements that appear partially see-through on top of one another. Th e alpha values for 
an image are sometimes referred to collectively as the  “ alpha channel ”  of an image. 

  It is important to realize that pixels are not literally transparent, this is simply a convenient illusion that 
is accomplished by blending colors. Behind the scenes,  Processing  takes the color numbers and adds a 
percentage of one to a percentage of another, creating the optical perception of blending. (If you are 
interested in programming  “ rose-colored ”  glasses, this is where you would begin.) 

  Alpha values also range from 0 to 255, with 0 being completely transparent (i.e., 0% opaque) and 255 
completely opaque (i.e., 100% opaque). Example 1-4 shows a code example that is displayed in 
 Figure 1.20   .  

   Example 1-4: Alpha transparency 

   background(0);  
   noStroke( );  

   fill(0,0,255); 
   rect(0,0,100,200);  

   fill(255,0,0,255); 
   rect(0,0,200,40);  

   fill(255,0,0,191); 
   rect(0,50,200,40);  

   fill(255,0,0,127); 
   rect(0,100,200,40);  

   fill(255,0,0,63); 
   rect(0,150,200,40);   

   1.6       Custom Color Ranges 
  RGB color with ranges of 0 to 255 is not the only way you can handle color in  Processing . Behind 
the scenes in the computer’s memory, color is  always  talked about as a series of 24 bits (or 32 in 
the case of colors with an alpha). However,  Processing  will let us think about color any way we like, 
and translate our values into numbers the computer understands. For example, you might prefer to 
think of color as ranging from 0 to 100 (like a percentage). You can do this by specifying a custom 
colorMode( )  . 

 fi g. 1.20              

No fourth argument means 100% opacity.

255 means 100% opacity.

75% opacity

50% opacity

25% opacity



Pixels  15

    colorMode(RGB,100);     

  Th e above function says:  “ OK, we want to think about color in terms of red, green, and blue. Th e range of 
RGB values will be from 0 to 100. ”  

  Although it is rarely convenient to do so, you can also have diff erent ranges for each color component: 

    colorMode(RGB,100,500,10,255);     

  Now we are saying  “ Red values go from 0 to 100, green from 0 to 500, blue from 0 to 10, and alpha from 
0 to 255. ”  

  Finally, while you will likely only need RGB color for all of your programming needs, you can also specify 
colors in the HSB (hue, saturation, and brightness) mode. Without getting into too much detail, HSB 
color works as follows: 

    •       Hue —The color type, ranges from 0 to 360 by default (think of 360° on a color  “ wheel ” ).  
    •       Saturation —The vibrancy of the color, 0 to 100 by default.  
    •       Brightness —The, well, brightness of the color, 0 to 100 by default.    

   ________________________________________ 

  ________________________________________  

 ________________________________________ 

   ________________________________________ 

 ________________________________________ 

   ________________________________________ 

   ________________________________________ 

   ________________________________________ 

   ________________________________________ 

    Exercise 1-7: Design a creature using simple shapes and colors. Draw the creature by hand 
using only points, lines, rectangles, and ellipses. Th en attempt to write the code for the 
creature, using the Processing commands covered in this chapter:  point( ), lines( ), rect( ), 
ellipse( ), stroke( ) ,  and   fi ll( ) . In the next chapter, you will have a chance to test your results 
by running your code in Processing.  

With colorMode( )  you can set your own color range.



16 Learning Processing

   Example 1-5 shows my version of Zoog, with the outputs shown in  Figure 1.21   .  

    Example 1-5: Zoog 

    ellipseMode(CENTER);  
    rectMode(CENTER);  
    stroke(0);  
    fi ll(150);  
    rect(100,100,20,100);
    fi ll(255);  
    ellipse(100,70,60,60);  
    fi ll(0);  
    ellipse(81,70,16,32);  
    ellipse(119,70,16,32);  
    stroke(0);  
    line(90,150,80,160);  
    line(110,150,120,160);  

   Th e sample answer is my  Processing -born being, named Zoog. Over the course of the fi rst nine chapters 
of this book, we will follow the course of Zoog’s childhood. Th e fundamentals of programming will be 
demonstrated as Zoog grows up. We will fi rst learn to display Zoog, then to make an interactive Zoog 
and animated Zoog, and fi nally to duplicate Zoog in a world of many Zoogs. 

   I suggest you design your own  “ thing ”  (note that there is no need to limit yourself to a humanoid or 
creature-like form; any programmatic pattern will do) and recreate all of the examples throughout 
the fi rst nine chapters with your own design. Most likely, this will require you to only change a small 
portion (the shape rendering part) of each example. Th is process, however, should help solidify your 
understanding of the basic elements required for computer programs—Variables, Conditionals, Loops, 
Functions, Objects, and Arrays—and prepare you for when Zoog matures, leaves the nest, and ventures 
off  into the more advanced topics from Chapter 10 on in this book.                                                                                                                              

 fi g. 1.21              



Processing  17

                  2       Processing    
   “ Computers in the future may weigh no more than 1.5 tons. ”   
  —Popular Mechanics, 1949  

   “ Take me to your leader. ”   
  —Zoog, 2008    

In this chapter: 
     –      Downloading and installing  Processing .
     –      Menu options.  
     –      A  Processing  “  sketchbook. ”
     –      Writing code.  
     –      Errors.  
     –      The  Processing  reference.  
     –      The  “ Play ”  button.  
     –      Your fi rst sketch.  
     –      Publishing your sketch to the web.    

    2.1        Processing  to the Rescue 
   Now that we conquered the world of primitive shapes and RGB color, we are ready to implement this 
knowledge in a real world programming scenario. Happily for us, the environment we are going to use is 
 Processing , free and open source software developed by Ben Fry and Casey Reas at the MIT Media Lab 
in 2001. (See this book’s introduction for more about  Processing ’s history.) 

    Processing ’s core library of functions for drawing graphics to the screen will provide for immediate visual 
feedback and clues as to what the code is doing. And since its programming language employs all the 
same principles, structures, and concepts of other languages (specifi cally Java), everything you learn with 
 Processing  is  real  programming. It is not some pretend language to help you get started; it has all the 
fundamentals and core concepts that all languages have. 

   After reading this book and learning to program, you might continue to use  Processing  in your academic 
or professional life as a prototyping or production tool. You might also take the knowledge acquired 
here and apply it to learning other languages and authoring environments. You may, in fact, discover 
that programming is not your cup of tea; nonetheless, learning the basics will help you become a better-
informed technology citizen as you work on collaborative projects with other designers and programmers. 

   It may seem like overkill to emphasize the  why  with respect to  Processing . After all, the focus of this 
book is primarily on learning the fundamentals of computer programming in the context of computer 
graphics and design. It is, however, important to take some time to ponder the reasons behind selecting 
a programming language for a book, a class, a homework assignment, a web application, a software suite, 
and so forth. After all, now that you are going to start calling yourself a computer programmer at cocktail 
parties, this question will come up over and over again. I need programming in order to accomplish 
project  X , what language and environment should I use? 

   I say, without a shadow of doubt, that for you, the beginner, the answer is  Processing . Its simplicity is ideal 
for a beginner. At the end of this chapter, you will be up and running with your fi rst computational design 
and ready to learn the fundamental concepts of programming. But simplicity is not where  Processing  



18 Learning Processing

ends. A trip through the  Processing  online exhibition ( http://processing.org/exhibition/  ) will uncover a 
wide variety of beautiful and innovative projects developed entirely with  Processing . By the end of this 
book, you will have all the tools and knowledge you need to take your ideas and turn them into real 
world software projects like those found in the exhibition.  Processing  is great both for learning and for 
producing, there are very few other environments and languages you can say that about.  

   2.2       How do I get  Processing?
   For the most part, this book will assume that you have a basic working knowledge of how to operate 
your personal computer. Th e good news, of course, is that  Processing  is available for free download. Head 
to  http://www.processing.org/  and visit the download page. If you are a Windows user, you will see two 
options:  “ Windows (standard) ”  and  “ Windows (expert). ”  Since you are reading this book, it is quite 
likely you are a beginner, in which case you will want the standard version. Th e expert version is for those 
who have already installed Java themselves. For Mac OS X, there is only one download option. Th ere is 
also a Linux version available. Operating systems and programs change, of course, so if this paragraph is 
obsolete or out of date, visit the download page on the site for information regarding what you need. 

   Th e  Processing  software will arrive as a compressed fi le. Choose a nice directory to store the application 
(usually  “ c:\Program Files\ ”  on Windows and in  “ Applications ”  on Mac), extract the fi les there, locate the 
 “ Processing ”  executable, and run it. 

   Exercise 2-1: Download and install  Processing.

    2.3       The Processing Application 
   Th e  Processing  development environment is a simplifi ed environment for writing computer code, and is just 
about as straightforward to use as simple text editing software (such as TextEdit or Notepad) combined 
with a media player. Each sketch ( Processing  programs are referred to as  “ sketches ” ) has a fi lename, a place 
where you can type code, and some buttons for saving, opening, and running sketches. See  Figure 2.1   . 

Stop New Export

SaveOpen

Type code here

Sketch
name

Message
window

Run

 fi g. 2.1         



   Once you have opened the example, click the  “ run ”  button as indicated in  Figure 2.3   . If a new window 
pops open running the example, you are all set! If this does not occur, visit the online FAQ  “ Processing 
won’t start! ”  for possible solutions. Th e page can be found at this direct link:  http://www.processing.org/faq/
bugs.html#wontstart . 

     Exercise 2-2: Open a sketch from the  Processing    examples and run it. 

    Processing  programs can also be viewed full-screen (known as  “ present mode ”  in  Processing ). Th is 
is available through the menu option: Sketch  →  Present (or by shift-clicking the run button). Present will 
not resize your screen resolution. If you want the sketch to cover your entire screen, you must use your 
screen dimensions in   size( )  .  

    2.4       The Sketchbook 
    Processing  programs are informally referred to as  sketches , in the spirit of quick graphics prototyping, and 
we will employ this term throughout the course of this book. Th e folder where you store your sketches 
is called your “sketchbook.” Technically speaking, when you run a sketch in  processing , it runs as a local 
application on your computer. As we will see both in this Chapter and in Chapter 18,  Processing  also 
allows you to export your sketches as web applets (mini-programs that run embedded in a browser) or as 
platform-specifi c stand-alone applications (that could, for example, be made available for download). 

   Once you have confi rmed that the  Processing  examples work, you are ready to start creating your own 
sketches. Clicking the  “ new ”  button will generate a blank new sketch named by date. It is a good idea to 
 “ Save as ”  and create your own sketch name. (Note:  Processing  does not allow spaces or hyphens, and your 
sketch name cannot start with a number.) 

 fi g. 2.2         

   To make sure everything is working, it is a good idea to try running one of the  Processing  examples. Go 
to FILE  →  EXAMPLES  →  (pick an example, suggested: Topics  →  Drawing  →  ContinuousLines) as 
shown in  Figure 2.2   . 

 fi g. 2.3         

Processing  19



20 Learning Processing

  When you fi rst ran  Processing , a default  “ Processing ”  directory was created to store all sketches in the 
 “ My Documents ”  folder on Windows and in  “ Documents ”  on OS X. Although you can select any 
directory on your hard drive, this folder is the default. It is a pretty good folder to use, but it can be 
changed by opening the  Processing  preferences (which are available under the FILE menu). 

  Each  Processing  sketch consists of a folder (with the same name as your sketch) and a fi le with the 
extension  “ pde. ”  If your  Processing  sketch is named  MyFirstProgram , then you will have a folder named 
MyFirstProgram  with a fi le  MyFirstProgram.pde  inside. Th e  “ pde ”  fi le is a plain text fi le that contains the 
source code. (Later we will see that  Processing  sketches can have multiple pde’s, but for now one will do.) 
Some sketches will also contain a folder called  “ data ”  where media elements used in the program, such as 
image fi les, sound clips, and so on, are stored. 

    Exercise 2-3: Type some instructions from Chapter 1 into a blank sketch. Note how certain 
words are colored. Run the sketch. Does it do what you thought it would?   

   2.5       Coding in  Processing
  It is fi nally time to start writing some code, using the elements discussed in Chapter 1. Let’s go over some 
basic syntax rules. Th ere are three kinds of statements we can write: 

    •      Function calls  
    •      Assignment operations  
    •      Control structures    

  For now, every line of code will be a function call. See  Figure 2.4   . We will explore the other two categories 
in future chapters. Functions have a name, followed by a set of arguments enclosed in parentheses. 
Recalling Chapter 1, we used functions to describe how to draw shapes (we just called them  “ commands ”  
or  “ instructions ” ). Th inking of a function call as a natural language sentence, the function name is the verb 
( “ draw ” ) and the arguments are the objects ( “ point 0,0 ” ) of the sentence. Each function call must always 
end with a semicolon. See  Figure 2.5   . 

Ends with
semi-colon

Arguments in
parenthesesFunction

name

Line (0,0,200,200);

 fi g. 2.4         

 We have learned several functions already, including   background( ), stroke( ), fi ll( ), noFill ( ), noStroke( ), 
point( ), line( ), rect( ), ellipse( ), rectMode( ),   and   ellipseMode( ) . Processing  will execute a sequence of 
functions one by one and fi nish by displaying the drawn result in a window. We forgot to learn one 
very important function in Chapter 1, however—  size( ). size( )   specifi es the dimensions of the window 
you want to create and takes two arguments, width and height. Th e   size( )   function should always 
be fi rst.

size(320,240); Opens a window of width 320 and height 240.



   Th ere are a few additional items to note. 

     •      The  Processing  text editor will color  known  words (sometimes referred to as  “ reserved ”  words or 
 “ keywords ” ). These words, for example, are the drawing functions available in the  Processing  library, 
 “ built-in ”  variables (we will look closely at the concept of  variables  in Chapter 3) and constants, as 
well as certain words that are inherited from the Java programming language.  

     •      Sometimes, it is useful to display text information in the  Processing  message window (located at the 
bottom). This is accomplished using the   println( )   function.   println( )   takes one argument, a  String  
of characters enclosed in quotes (more about  Strings  in Chapter 14). When the program runs, 
 Processing  displays that  String  in the message window (as in  Figure 2.5 ) and in this case the  String  
is  “ Take me to your leader! ”  This ability to print to the message window comes in handy when 
attempting to  debug  the values of variables (see Chapter 12, Debugging).  

     •      The number in the bottom left corner indicates what line number in the code is selected.  
     •      You can write  “ comments ”  in your code. Comments are lines of text that  Processing  ignores when 

the program runs. You should use them as reminders of what the code means, a bug you intend to 
fix, or a to do list of items to be inserted, and so on. Comments on a single line are created with two 
forward slashes,  // . Comments over multiple lines are marked by  /*  followed by the comments and 
ending with  */ .       

   Let’s write a fi rst example ( see Figure 2.5 ). 

Output
window

Code

Print
messages

 fi g. 2.5         

Processing  21



22 Learning Processing

   // Th is is a comment on one line 

   /* Th is is a comment that 
spans several lines 
of code */      

  A quick word about comments. You should get in the habit right now of writing comments in your 
code. Even though our sketches will be very simple and short at fi rst, you should put comments in for 
everything. Code is very hard to read and understand without comments. You do not need to have a 
comment for every line of code, but the more you include, the easier a time you will have revising and 
reusing your code later. Comments also force you to understand how code works as you are programming. 
If you do not know what you are doing, how can you write a comment about it? 

 Comments will not always be included in the text here. Th is is because I fi nd that, unlike in an actual 
program, code comments are hard to read in a book. Instead, this book will often use code  “ hints ”  for 
additional insight and explanations. If you look at the book’s examples on the web site, though, comments 
will always be included. So, I can’t emphasize it enough, write comments! 

   // A comment about this code  

   line(0,0,100,100);   
    

    Exercise 2-4: Create a blank sketch. Take your code from the end of Chapter 1 and type it in 
the Processing window. Add comments to describe what the code is doing. Add a  println( )  
statement to display text in the message window. Save the sketch. Press the  “ run ”  button. Does it 
work or do you get an error?   

   2.6       Errors 
  Th e previous example only works because we did not make any errors or typos. Over the course of a 
programmer’s life, this is quite a rare occurrence. Most of the time, our fi rst push of the play button will 
not be met with success. Let’s examine what happens when we make a mistake in our code in  Figure 2.6   . 

   Figure 2.6  shows what happens when you have a typo— “ elipse ”  instead of  “ ellipse ”  on line 9. If there is 
an error in the code when the play button is pressed,  Processing  will not open the sketch window, and will 
instead display the error message. Th is particular message is fairly friendly, telling us that we probably 
meant to type  “ ellipse. ”  Not all  Processing  error messages are so easy to understand, and we will continue 
to look at other errors throughout the course of this book. An Appendix on common errors in Processing 
is also included at the end of the book.

A hint about this code!



Processing  23

Line 9 highlighted

Line 9

Error message

Error message
again!

 fi g. 2.6         

        Processing is case sensitive!      

   If you type  Ellipse  instead of  ellipse , that will also be considered an error.      

   In this instance, there was only one error. If multiple errors occur,  Processing  will only alert you to the fi rst 
one it fi nds (and presumably, once that error is corrected, the next error will be displayed at run time). 
Th is is somewhat of an unfortunate limitation, as it is often useful to have access to an entire list of errors 
when fi xing a program. Th is is simply one of the trade-off s we get in a simplifi ed environment such as 
 Processing.  Our life is made simpler by only having to look at one error at a time, nevertheless we do not 
have access to a complete list. 

   Th is fact only further emphasizes the importance of incremental development discussed in the 
book’s introduction. If we only implement one feature at a time, we can only make one mistake at 
a time. 

    Exercise 2-5: Try to make some errors happen on purpose. Are the error messages what you 
expect?  



24 Learning Processing

     size(200,200);  _______________________________________  

     background();  _______________________________________  

     stroke 255;  ______________________________________  _

     fill(150)  ______________________________  _________

     rectMode(center);  _______________________________________  

     rect(100,100,50);  _______________________________________     

    Exercise 2-6: Fix the errors in the following code.  

    2.7       The  Processing  Reference 
   Th e functions we have demonstrated—  ellipse( ), line( ), stroke( ) ,  and so on—are all part of  Processing’s  
library. How do we know that  “ ellipse ”  isn’t spelled  “ elipse ” , or that   rect( )   takes four arguments (an 
 “  x  coordinate, ”  a  “  y  coordinate, ”  a  “ width, ”  and a  “ height ” )? A lot of these details are intuitive, and this 
speaks to the strength of  Processing  as a beginner’s programming language. Nevertheless, the only way 
to know for sure is by reading the online reference. While we will cover many of the elements from the 
reference throughout this book, it is by no means a substitute for the reference and both will be required 
for you to learn  Processing . 

   Th e reference for  Processing  can be found online at the offi  cial web site ( http://www.processing.org ) under 
the  “ reference ”  link. Th ere, you can browse all of the available functions by category or alphabetically. 
If you were to visit the page for   rect( )  , for example, you would fi nd the explanation shown in 
 Figure 2.7   . 

   As you can see, the reference page off ers full documentation for the function   rect( )  , including: 

     •       Name —The name of the function.  
     •       Examples —Example code (and visual result, if applicable).  
     •       Description —A friendly description of what the function does.  
     •       Syntax —Exact syntax of how to write the function.  
     •       Parameters —These are the elements that go inside the parentheses. It tells you what kind of data 

you put in (a number, character, etc.) and what that element stands for. (This will become clearer as 
we explore more in future chapters.) These are also sometimes referred to as  “ arguments. ”   

     •       Returns —Sometimes a function sends something back to you when you call it (e.g., instead of 
asking a function to perform a task such as draw a circle, you could ask a function to add two 
numbers and  return  the answer to you). Again, this will become more clear later.  

     •       Usage —Certain functions will be available for  Processing  applets that you publish online ( “ Web ” ) 
and some will only be available as you run  Processing  locally on your machine ( “ Application ” ).  

     •       Related Methods —A list of functions often called in connection with the current function. Note 
that  “ functions ”  in Java are often referred to as  “ methods. ”  More on this in Chapter 6.    



Processing  25

    Processing  also has a very handy  “ fi nd in reference ”  option. Double-click on any keyword to select it and 
go to to HELP  →  FIND IN REFERENCE (or select the keyword and hit SHIFT     �     CNTRL     �     F). 

    Exercise 2-7: Using the Processing reference, try implementing two functions that we have 
not yet covered in this book. Stay within the  “ Shape ”  and  “ Color (setting) ”  categories.  

    Exercise 2-8: Using the reference, fi nd a function that allows you to alter the thickness of a 
line. What arguments does the function take? Write example code that draws a line one pixel 
wide, then fi ve pixels wide, then 10 pixels wide.   

    2.8       The  “ Play ”  Button 
   One of the nice qualities of  Processing  is that all one has to do to run a program is press the  “ play ”  button. 
It is a nice metaphor and the assumption is that we are comfortable with the idea of  playing  animations, 

 fi g. 2.7         



26 Learning Processing

movies, music, and other forms of media.  Processing  programs output media in the form of real-time 
computer graphics, so why not just  play  them too? 

   Nevertheless, it is important to take a moment and consider the fact that what we are doing here is not 
the same as what happens on an iPod or TiVo.  Processing  programs start out as text, they are translated 
into machine code, and then executed to run. All of these steps happen in sequence when the play button 
is pressed. Let’s examine these steps one by one, relaxed in the knowledge that  Processing  handles the hard 
work for us. 

     Step 1.   Translate to Java.  Processing  is really Java (this will become more evident in a detailed 
discussion in Chapter 23). In order for your code to run on your machine, it must fi rst be 
translated to Java code.  

     Step 2.   Compile into Java byte code. Th e Java code created in Step 1 is just another text fi le (with 
the .java extension instead of .pde). In order for the computer to understand it, it needs to 
be translated into machine language. Th is translation process is known as compilation. If you 
were programming in a diff erent language, such as C, the code would compile directly into 
machine language specifi c to your operating system. In the case of Java, the code is compiled 
into a special machine language known as Java byte code. It can run on diff erent platforms 
(Mac, Windows, cellphones, PDAs, etc.) as long as the machine is running a  “ Java Virtual 
Machine. ”  Although this extra layer can sometimes cause programs to run a bit slower than 
they might otherwise, being cross-platform is a great feature of Java. For more on how this 
works, visit  http://java.sun.com  or consider picking up a book on Java programming (after 
you have fi nished with this one).  

     Step 3.   Execution. Th e compiled program ends up in a JAR fi le. A JAR is a Java archive fi le 
that contains compiled Java programs ( “ classes ” ), images, fonts, and other data fi les. 
Th e JAR fi le is executed by the Java Virtual Machine and is what causes the display 
window to appear.     

    2.9       Your First Sketch 
   Now that we have downloaded and installed  Processing , understand the basic menu and interface 
elements, and have gotten familiar with the online reference, we are ready to start coding. As I 
briefl y mentioned in Chapter 1, the fi rst half of this book will follow one example that illustrates the 
foundational elements of programming:  variables, arrays, conditionals, loops, functions, and objects . Other 
examples will be included along the way, but following just one will reveal how the basic elements behind 
computer programming build on each other. 

   Th e example will follow the story of our new friend Zoog, beginning with a static rendering with simple 
shapes. Zoog’s development will include mouse interaction, motion, and cloning into a population of 
many Zoogs. While you are by no means required to complete every exercise of this book with your own 
alien form, I do suggest that you start with a design and after each chapter, expand the functionality of 
that design with the programming concepts that are explored. If you are at a loss for an idea, then just 
draw your own little alien, name it Gooz, and get programming! See  Figure 2.8   .  



Processing  27

   Example 2-1: Zoog again 

   size(200,200); // Set the size of the window 
   background(255); // Draw a black background 
   smooth(); 

   // Set ellipses and rects to CENTER mode 
   ellipseMode(CENTER); 
   rectMode(CENTER); 

   // Draw Zoog’s body 
   stroke(0); 
   fill(150); 
   rect(100,100,20,100); 

   // Draw Zoog’s head 
   fill(255); 
   ellipse(100,70,60,60); 

   // Draw Zoog’s eyes 
   fill(0); 
   ellipse(81,70,16,32); 
   ellipse(119,70,16,32); 

   // Draw Zoog’s legs 
   stroke(0); 
   line(90,150,80,160); 
   line(110,150,120,160); 

  Let’s pretend, just for a moment, that you fi nd this Zoog design to be so astonishingly gorgeous that you 
just cannot wait to see it displayed on your computer screen. (Yes, I am aware this may require a fairly 
signifi cant suspension of disbelief.) To run any and all code examples found in this book, you have two 
choices: 

    •      Retype the code manually.  
    •      Visit the book’s web site ( http://www.learningprocessing.com ), find the example by its number, and 

copy/paste (or download) the code.    

  Certainly option #2 is the easier and less time-consuming one and I recommend you use the site as a 
resource for seeing sketches running in real-time and grabbing code examples. Nonetheless, as you start 
learning, there is real value in typing the code yourself. Your brain will sponge up the syntax and logic 
as you type and you will learn a great deal by making mistakes along the way. Not to mention simply 
running the sketch after entering each new line of code will eliminate any mystery as to how the sketch 
works. 

  You will know best when you are ready for copy /paste. Keep track of your progress and if you start 
running a lot of examples without feeling comfortable with how they work, try going back to manual 
typing. 

 fi g. 2.8         

Zoog’s body.

Zoog’s head.

Zoog’s eyes.

Zoog’s legs.

The function smooth() enables “anti-aliasing” 
which smooths the edges of the shapes. 
no smooth() disables anti-aliasing.



28 Learning Processing

    Exercise 2-9: Using what you designed in Chapter 1, implement your own screen drawing, 
using only 2D primitive shapes— arc( ) ,  curve( ) ,  ellipse( ) ,  line( ) ,  point( ) ,  quad( ) ,  rect( ) , 
 triangle( ) —and basic color functions— background( ) ,  colorMode( ) ,  fi ll( ) ,  noFill( ) , 
 noStroke( ) , and  stroke( ) . Remember to use  size( )  to specify the dimensions of your window. 
Suggestion: Play the sketch after typing each new line of code. Correct any errors or typos 
along the way.   

    2.10       Publishing Your Program 
   After you have completed a  Processing  sketch, you can publish it to the web as a Java applet. Th is will 
become more exciting once we are making interactive, animated applets, but it is good to practice with a 
simple example. Once you have fi nished Exercise 2-9 and determined that your sketch works, select 
FILE  →  EXPORT. 

   Note that if you have errors in your program, it will not export properly, so always test by running fi rst! 

   A new directory named  “ applet ”  will be created in the sketch folder and displayed, as shown in  Figure 2.9   . 

 fi g. 2.9         

   You now have the necessary fi les for publishing your applet to the web. 

     •       index.html —The HTML source for a page that displays the applet.  
     •       loading.gif —An image to be displayed while the user loads the applet ( Processing  will supply a 

default one, but you can create your own).  
     •       zoog.jar —The compiled applet itself.  
     •       zoog.java —The translated Java source code (looks like your  Processing  code, but has a few extra 

things that Java requires. See Chapter 20 for details.)  
     •       zoog.pde —Your  Processing  source.    



Processing  29

   To see the applet working, double-click the  “ index.html ”  fi le which should launch a page in your default 
web browser. See  Figure 2.10   . To get the applet online, you will need web server space and FTP software 
(or you can also use a  Processing  sketch sharing site such as  http://www.openprocessing.org ). You can fi nd 
some tips for getting started at this book’s web site. 

 fi g. 2.10         

    Exercise 2-10: Export your sketch as an applet. View the sketch in the browser (either locally 
or by uploading).     00002  00002                                                                     



This page intentionally left blank



Interaction  31

                 3       Interaction    
   “ Always remember that this whole thing was started with a dream and a mouse. ” 
—Walt Disney  

   “ Th e quality of the imagination is to fl ow and not to freeze. ” 
—Ralph Waldo Emerson    

   In this chapter: 
     –      The  “ fl ow ”  of a program.  
     –      The meaning behind  setup( ) and draw( ) .
     –      Mouse interaction.  
     –      Your fi rst  “ dynamic ”   Processing  program.  
     –      Handling events, such as mouse clicks and key presses.    

    3.1       Go with the fl ow. 
   If you have ever played a computer game, interacted with a digital art installation, or watched a 
screensaver at three in the morning, you have probably given very little thought to the fact that the 
software that runs these experiences happens over a  period of time . Th e game starts, you save princess 
so-and-so from the evil lord who-zee-ma-whats-it, achieve a high score, and the game ends. 

   What I want to focus on in this chapter is that very  “ fl ow ”  over time. A game begins with a set of initial 
conditions: you name your character, you start with a score of zero, and you start on level one. Let’s think 
of this part as the program’s  SETUP . After these conditions are initialized, you begin to play the game. 
At every instant, the computer checks what you are doing with the mouse, calculates all the appropriate 
behaviors for the game characters, and updates the screen to render all the game graphics. Th is cycle of 
calculating and drawing happens over and over again, ideally 30 or more times per second for a smooth 
animation. Let’s think of this part as the program’s  DRAW . 

   Th is concept is crucial to our ability to move beyond static designs (as in Chapter 2) with 
 Processing . 

     Step 1.  Set starting conditions for the program one time.  
     Step 2.   Do something over and over and over and over (and over  … ) again until the program 

quits.    

   Consider how you might go about running a race. 

     Step 1.  Put on your sneakers and stretch. Just do this once, OK?  
     Step 2.   Put your right foot forward, then your left foot. Repeat this over and over as fast as 

you can.  
     Step 3.  After 26 miles, quit.    



32 Learning Processing

        What is a block of code?      

   A block of code is any code enclosed within curly brackets. 

       {     
           A block of code    

       }       

   Blocks of code can be nested within each other, too. 

       {     
           A block of code    
            {     
                A block inside a block of code    
            }     

       }       

   Th is is an important construct as it allows us to separate and manage our code as individual pieces 
of a larger puzzle. A programming convention is to indent the lines of code within each block to 
make the code more readable.  Processing  will do this for you via the Auto-Format option (Tools  →  
Auto-Format). 

   Blocks of code will reveal themselves to be crucial in developing more complex logic, in terms of 
 variables ,  conditionals ,  iteration ,  objects , and  functions , as discussed in future chapters. For now, we 
only need to look at two simple blocks:   setup( )   and   draw( ) .       

    3.2       Our Good Friends,  setup( )  and  draw( )
   Now that we are good and exhausted from running marathons in order to better learn programming, 
we can take this newfound knowledge and apply it to our fi rst  “ dynamic ”   Processing  sketch. Unlike 
Chapter 2’s static examples, this program will draw to the screen continuously (i.e., until the user 
quits). Th is is accomplished by writing two  “ blocks of code ”    setup( )   and   draw( )  . Technically  
speaking   setup( )   and   draw( )   are functions. We will get into a longer discussion of writing 
our own functions in a later chapter; for now, we understand them to be two sections where we 
write code.

    Exercise 3-1: In English, write out the  “ fl ow ”  for a simple computer game, such as Pong. 
If you are not familiar with Pong, visit:   http://en.wikipedia.org/wiki/Pong . 

   _______________________________________________________________ 

   _______________________________________________________________ 

   _______________________________________________________________ 

   _______________________________________________________________  



Interaction  33

   Let’s look at what will surely be strange-looking syntax for   setup( )   and   draw( )  . See  Figure 3.1   . 

void setup() {
  // Initialization code goes here
}

void draw() {
  // Code that runs forever goes here
}

What’s this? What are these for?

Curly brackets open and close a block of code.

 fi g. 3.1         

void setup() {
  // Step 1a
  // Step 1b
  // Step 1c
}

void draw() {
  // Step 2a
  // Step 2b
}

Do once!

Skip to draw.

Loop over and over!

 fi g. 3.2         

   Admittedly, there is a lot of stuff  in  Figure 3.1  that we are not entirely ready to learn about. We have 
covered that the curly brackets indicate the beginning and end of a  “ block of code, ”  but why are there 
parentheses after  “ setup ”  and  “ draw ” ? Oh, and, my goodness, what is this  “ void ”  all about? It makes me 
feel sad inside! For now, we have to decide to feel comfortable with not knowing everything all at once, 
and that these important pieces of syntax will start to make sense in future chapters as more concepts 
are revealed. 

   For now, the key is to focus on how  Figure 3.1 ’s structures control the fl ow of our program. Th is is shown 
in  Figure 3.2   . 

   How does it work? When we run the program, it will follow our instructions precisely, executing the steps 
in   setup( )   fi rst, and then move on to the steps in   draw( )  . Th e order ends up being something like: 

    1a, 1b, 1c, 2a, 2b, 2a, 2b, 2a, 2b, 2a, 2b, 2a, 2b, 2a, 2b  …     

   Now, we can rewrite the Zoog example as a dynamic sketch. See  Example 3–1   .  



34 Learning Processing

   Example 3-1: Zoog as dynamic sketch 

   void setup() {  
        // Set the size of the window  
        size(200,200);  
    }   

   void draw()  {  
        // Draw a white background  
        background(255);  

        // Set CENTER mode  
        ellipseMode(CENTER);  
        rectMode(CENTER);  

        // Draw Zoog's body  
        stroke(0);  
        fill(150);  
        rect(100,100,20,100);  

        // Draw Zoog's head  
        stroke(0);  
        fill(255);  
        ellipse(100,70,60,60);  

        // Draw Zoog's eyes  
        fill(0);  
        ellipse(81,70,16,32);  
        ellipse(119,70,16,32);  

        // Draw Zoog's legs  
        stroke(0);  
        line(90,150,80,160);  
        line(110,150,120,160);  
    }   

  Take the code from Example 3-1 and run it in  Processing.  Strange, right? You will notice that nothing in the 
window changes. Th is looks identical to a  static  sketch! What is going on? All this discussion for nothing? 

  Well, if we examine the code, we will notice that nothing in the   draw( )   function  varies . Each time 
through the loop, the program cycles through the code and executes the identical instructions. So, yes, 
the program is running over time redrawing the window, but it looks static to us since it draws the same 
thing each time! 

    Exercise 3-2: Redo the drawing you created at the end of Chapter 2 as a dynamic program. 
Even though it will look the same, feel good about your accomplishment!   

setup() runs fi rst one time. size() should always be 
fi rst line of setup() since Processing  will not be able 
to do anything before the window size if specifi ed.

draw() loops continuously until you close the sketch 
window.

fi  g. 3.3         



Interaction  35

   3.3       Variation with the Mouse 
  Consider this. What if, instead of typing a number into one of the drawing functions, you could type  “ the 
mouse’s  X  location ”  or  “ the mouse’s  Y  location. ”  

    line(the mouse's X location, the mouse's Y location, 100, 100);     

  In fact, you can, only instead of the more descriptive language, you must use the keywords   mouseX   and 
mouseY  , indicating the horizontal or vertical position of the mouse cursor.   

   Example 3-2:  mouseX  and  mouseY

   void setup()  {  
        size(200,200); 

    }   

   void draw()  {  
        background(255); 

        // Body 
        stroke(0); 
        fill(175); 
        rectMode(CENTER); 
        rect(mouseX,mouseY,50,50); 
    } 

 fi g. 3.4         

          

        An Invisible Line of Code      

   If you are following the logic of   setup( )   and   draw( )   closely, you might arrive at an interesting question: 
  When does  Processing  actually display the shapes in the window? When do the new pixels appear?   

   _____________________________________________________ 

   _____________________________________________________ 

   _____________________________________________________

_____________________________________________________

_____________________________________________________

               Exercise 3-3: Explain why we see a trail of rectangles if we move  background( )  to  setup( ) , 
leaving it out of  draw( ) .  

Try moving background()
to setup() and see the 
difference! (Exercise 3–3)

mouseX is a keyword that the sketch replaces with 
the horizontal position of the mouse.
mouseY is a keyword that the sketch replaces with 
the vertical position of the mouse.



36 Learning Processing

  We could push this idea a bit further and create an example where a more complex pattern (multiple 
shapes and colors) is controlled by   mouseX   and   mouseY   position. For example, we can rewrite 
Zoog to follow the mouse. Note that Zoog’s body is located at the exact location of the mouse (  mouseX, 
mouseY  ), however, other parts of Zoog’s body are drawn relative to the mouse. Zoog’s head, for example, 
is located at (  mouseX, mouseY-30  ). Th e following example only moves Zoog’s body and head, as shown in 
 Figure 3.5   .  

   Example 3-3: Zoog as dynamic sketch with variation 

   void setup()  {   
        size(200,200); // Set the size of the window  
        smooth();  
          }   

   void draw()  {   
        background(255); // Draw a white background  

        // Set ellipses and rects to CENTER mode  
        ellipseMode(CENTER);  
        rectMode(CENTER);  

        // Draw Zoog's body  
        stroke(0);  
        fill(175);  
        rect(mouseX,mouseY,20,100); 

        // Draw Zoog's head  
        stroke(0);  
        fill(255);  
        ellipse(mouseX,mouseY-30,60,60);            

   On fi rst glance, one might assume the display is updated for every line of code that includes a 
drawing function. If this were the case, however, we would see the shapes appear onscreen one at 
a time. Th is would happen so fast that we would hardly notice each shape appearing individually. 
However, when the window is erased every time   background( )   is called, a somewhat unfortunate 
and unpleasant result would occur: fl icker. 

    Processing  solves this problem by updating the window only at the end of every cycle through 
  draw( )  . It is as if there were an invisible line of code that renders the window at the end of the 
  draw( )   function. 

     void draw()  {    
          // All of your code   
          // Update Display Window -- invisible line of code we don’t see   
      }      

   Th is process is known as  double-buff ering  and, in a lower-level environment, you may fi nd that 
you have to implement it yourself. Again, we take the time to thank  Processing  for making our 
introduction to programming friendlier and simpler by taking care of this for us.      

 fi g. 3.5           

Zoog’s head is drawn above the body 
at the location (mouseX, mouseY-30).

Zoog’s body is drawn at the location 
(mouseX, mouseY).



Interaction  37

         // Draw Zoog's eyes 
         fill(0); 
         ellipse(81,70,16,32); 
         ellipse(119,70,16,32); 

         // Draw Zoog's legs 
         stroke(0); 
         line(90,150,80,160); 
         line(110,150,120,160); 
     }   

    Exercise 3-4: Complete Zoog so that the rest of its body moves with the mouse.  

mouseX � 20
mouseY � 50

1st time
through draw()

100 � 100 window
20 75

25

50

50

90

2nd time
through draw()

3rd time
through draw()

pmouseX � 20
pmouseY � 50
mouseX � 75
mouseY � 25

pmouseX � 20
pmouseY � 50
mouseX � 50
mouseY � 90

 fi g. 3.6              

   In addition to   mouseX   and   mouseY  , you can also use   pmouseX   and   pmouseY  . Th ese two keywords stand 
for the  “ previous ”  mouse X  and mouse Y  locations, that is, where the mouse was the last time we cycled 
through   draw( )  . Th is allows for some interesting interaction possibilities. For example, let’s consider what 
happens if we draw a line from the previous mouse location to the current mouse location, as illustrated 
in the diagram in  Figure 3.6   . 

    // Draw Zoog's eyes 

    fill(0); 

    ellipse(_______,_______ ,16,32);   

    ellipse(_______,_______ ,16,32); 

    // Draw Zoog's legs 

stroke(0);

    line(_______,_______,_______,_______); 

    line(_______,_______,_______,_______); 

    Exercise 3-5: Recode your design so that shapes respond to the mouse (by varying color and 
location).  



38 Learning Processing

     •       The absolute value of –2 is 2.   
     •       The absolute value of 2 is 2.     

    In Processing, we can get the absolute value of the number by placing it inside the  abs( )  function, 
that is,  

    •  abs( � 5)  →  5    

    Th e speed at which the mouse is moving is therefore: 

    •  abs(  mouseX  -  pmouseX   )   

    Update Exercise 3-7 so that the faster the user moves the mouse, 
the wider the drawn line. Hint: look up  strokeWeight( )  in the 
Processing reference.  

    stroke(255);  

    _____________________________ (______________); 

    line(pmouse  X  ,pmouse Y ,mouse X ,mouse Y);  

   Example 3-4: Drawing a continuous line 

   void setup()  {   
        size(200,200);  
        background(255);  
        smooth();  
    }   

   void draw()  {   
        stroke(0); 
        line(pmouse X ,pmouse Y ,mouse X ,mouse Y );  
    }   

    Exercise 3-6: Fill in the blank in    Figure 3.6  . 

 fi g. 3.7         

  By connecting the previous mouse location to the current mouse location with a line each time through 
draw( )  , we are able to render a continuous line that follows the mouse. See  Figure 3.7   .  

    Exercise 3-7: Th e formula for calculating the speed of the mouse’s horizontal motion is the 
absolute value of the diff erence between  mouseX  and  pmouseX . Th e absolute value of a 
number is defi ned as that number without its sign:  

Draw a line from previous mouse 
location to current mouse location.



Interaction  39

  3.4       Mouse Clicks and Key Presses 
  We are well on our way to creating dynamic, interactive  Processing  sketches through the use the   setup( )   
and   draw( )   framework and the   mouseX   and   mouseY   keywords. A crucial form of interaction, however, is 
missing—clicking the mouse! 

  In order to learn how to have something happen when the mouse is clicked, we need to return to the 
fl ow of our program. We know   setup( )   happens once and   draw( )   loops forever. When does a mouse 
click occur? Mouse presses (and key presses) as considered  events  in  Processing . If we want something 
to happen (such as  “ the background color changes to red ” ) when the mouse is clicked, we need to add a 
third block of code to handle this event. 

  Th is event  “ function ”  will tell the program what code to execute when an event occurs. As with   setup( )  , 
the code will occur once and only once. Th at is, once and only once for each occurrence of the event. An 
event, such as a mouse click, can happen multiple times of course! 

  Th ese are the two new functions we need: 

    •       mousePressed( )  —Handles mouse clicks.  
    •       keyPressed( )  —Handles key presses.    

 Th e following example uses both event functions, adding squares whenever the mouse is pressed and 
clearing the background whenever a key is pressed.

   Example 3-5:  mousePressed( )  and  keyPressed( )

   void setup()  {  
        size(200,200); 
        background(255); 
    }   

   void draw()  {  

   } 

void mousePressed() {
        stroke(0); 
        fill(175); 
        rectMode(CENTER); 
        rect(mouseX,mouseY,16,16); 
    }   

   void keyPressed()  {
        background(255); 
    }   

  In Example 3-5, we have four functions that describe the program’s fl ow. Th e program starts in   setup( )   where 
the size and background are initialized. It continues into   draw( )  , looping endlessly. Since   draw( )   contains 
no code, the window will remain blank. However, we have added two new functions:   mousePressed( )   and 

 fi g. 3.8         

Nothing happens in draw() in this example!

Whenever a user clicks the mouse the code 
written inside mousePressed() is executed.

Whenever a user presses a key the code 
written inside keyPressed() is executed.



keyPressed( )  . Th e code inside these functions sits and waits. When the user clicks the mouse (or presses a 
key), it springs into action, executing the enclosed block of instructions once and only once. 

    Exercise 3-8: Add  “  background(255);  ”  to the draw( ) function. Why does the program stop 
working?  

  We are now ready to bring all of these elements together for Zoog. 

    •      Zoog’s entire body will follow the mouse.  
    •      Zoog’s eye color will be determined by mouse location.  
    •      Zoog’s legs will be drawn from the previous mouse location to the current mouse location.  
    •      When the mouse is clicked, a message will be displayed in the message window:  “ Take me to your 

leader! ”     

 Note the addition in Example 3–6 of the function   frameRate( ). frameRate( )  , which requires an integer 
between 1 and 60, enforces the speed at which  Processing  will cycle through   draw( ). frameRate (30)  , 
for example, means 30 frames per second, a traditional speed for computer animation. If you do not 
include   frameRate( )  ,  Processing  will attempt to run the sketch at 60 frames per second. Since computers 
run at diff erent speeds,   frameRate( )   is used to make sure that your sketch is consistent across multiple 
computers.

  Th is frame rate is just a maximum, however. If your sketch has to draw one million rectangles, it may take 
a long time to fi nish the draw cycle and run at a slower speed.  

   Example 3-6: Interactive Zoog 

   void setup()  {   
        // Set the size of the window  

        size(200,200);  
        smooth();  
       frameRate(30)  ;
}

   void draw()  {   
        // Draw a black background 
 background(255); 

        // Set ellipses and rects to CENTER mode  
        ellipseMode(CENTER);  
        rectMode(CENTER);  

        // Draw Zoog's body  
        stroke(0);  
        fill(175);  
        rect(mouseX,mouseY,20,100);  

        // Draw Zoog's head  
        stroke(0);  
        fill(255);  
        ellipse(mouse X ,mouse Y -30,60,60);  

 fi g. 3.9              

The frame rate is set to 
30 frames per second.

40 Learning Processing



Interaction  41

        // Draw Zoog's eyes 
        fill(mo useX,0,mouseY);
        ellipse(mouse X-19,mouseY-30,16,32);
        ellipse(mouse X   +       19,mouse Y-30,16,32);

        // Draw Zoog's legs 
        stroke(0); 
        line(mouse X-10,mouseY     +     50,pmouse X-10,pmouseY     +     60); 
        line(mouse X     +     10,mouse Y     +     50,pmouse X     +     10,pmouse Y     +     60); 
    }   

   void mousePressed()  {  
        println( "Take me to your leader! ");
    } 

The legs are drawn according to 
the mouse location and the previous 
mouse location.

The eye color is determined by the mouse location.



        Lesson One Project      
    (You may have completed much of this project already via the exercises in Chapters 1–3. 
Th is project brings all of the elements together. You could either start from scratch with a 
new design or use elements from the exercises.)  

     Step 1.  Design a static screen drawing using RGB color and primitive shapes.  

     Step 2.   Make the static screen drawing dynamic by having it interact with the 
mouse. Th is might include shapes following the mouse, changing their 
size according to the mouse, changing their color according to the mouse, 
and so on.    

   Use the space provided below to sketch designs, notes, and pseudocode for your 
project.                         

42 Learning Processing


